Реальная версия ЕНТ по математике 2021 года. Вариант 4217

При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Сумма числа 3 и значения частного чисел 24 и 6 равна

1) 6 2) 10 3) 9 4) 5 5) 7

2. Решите уравнение: $\frac{2x^2 + 15x + 25}{5 + x} = 0.$

- 1) -0,4 2) -2,5 μ -5 3) -2,5 4) -0,4 μ -5 5) -0,4 μ -2,5

3. Решите систему уравнений: $\begin{cases} 5x - 2y = 15, \\ -2x + y = -7. \end{cases}$

- 4. От города до села автобус проехал за 3 часа. Если бы он увеличил скорость на 25 км/ч, то дорога заняла бы на 1 час меньше. Найдите расстояние от города до села.

- 1) 150 км 2) 75 км 3) 100 км 4) 125 км 5) 50 км
- **5.** Найдите область определения функции $y = \sqrt{\log_{\frac{1}{2}}(x+2)}$.

- 1) $(-2; +\infty)$ 2) (-2; 1] 3) (-2; -1] 4) $(-\infty; -1)$ 5) $[-1; +\infty)$

6. Решите систему уравнений: $\begin{cases} 3^{y} \cdot 2^{x} = 972, \\ y - x = 3. \end{cases}$

- 5) (3; 4)
- 7. Найдите первый член арифметической прогрессии, если сумма двадцати яти первых членов прогрессии равна 250 и d=3.

1) 23,5

- 2) -24 3) -26 4) -20,5 5) 22,5

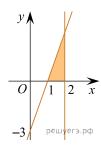
8. Для функции $f(x) = 3^x + 2^x$ найдите f'(1).

1)
$$3 \ln 3 + 2 \ln 2$$
 2) $\ln 3 + \ln 2$ 3) $2 \ln 3 + 3 \ln 2$
4) $3 \ln 3 - 2 \ln 2$ 5) $\ln 9 - \ln 4$

9. Гипотенуза прямоугольного треугольника с катетами 6 и 12 равна

- 1) $6\sqrt{3}$ 2) $12\sqrt{5}$ 3) $6\sqrt{5}$ 4) $12\sqrt{2}$
- 5) $6\sqrt{2}$
- 10. Найдите объем правильной треугольной усеченной пирамиды, высота которой 6 м и стороны оснований 3 м и 4 м.

- 1) $\frac{19\sqrt{3}}{2}$ m³ 2) $\frac{39\sqrt{3}}{2}$ m³ 3) $27\sqrt{3}2$ m³ 4) $\frac{37\sqrt{3}}{2}$ m³

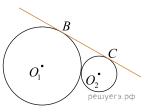

 - 5) $\frac{17\sqrt{3}}{2}$ m³
- 11. Если сумма с пятого по восьмой член арифметической прогрессии равна 48, а разность прогрессии равна 2, то ее первый член равен

1) 3

- $2) 2 \qquad 3) -3 \qquad 4) -2$
- 5) 1

- **12.** Значение переменной x, при котором верно неравенство: $\frac{1}{5} < x < \frac{1}{2}$.
- 1) $\frac{1}{4}$ 2) $\frac{1}{10}$ 3) $\frac{9}{10}$ 4) $\frac{4}{5}$ 5) $\frac{3}{4}$
- **13.** Решите систему неравенств: $\begin{cases} \sin 2x > 0, \\ \cos 2x \leqslant \frac{1}{2}. \end{cases}$

- 1) $\left[\frac{\pi}{6} + \pi n; \frac{\pi}{2} + \pi n\right), n \in \mathbb{Z}$ 2) $\left[\frac{\pi}{4} + \pi n; \frac{\pi}{2} + \pi n\right), n \in \mathbb{Z}$ 3) $\left(\frac{\pi}{2} + 2\pi n; \pi + 2\pi n\right), n \in \mathbb{Z}$ 4) $\left(\frac{\pi}{3} + 2\pi n; \frac{\pi}{2} + 2\pi n\right], n \in \mathbb{Z}$
 - 5) $\left[\frac{3\pi}{2} + 2\pi n; \frac{5\pi}{2} + 2\pi n\right), n \in \mathbb{Z}$
- 14. Найдите площадь заштрихованной фигуры:



- 1) 4,5 кв. ед. 2) 3 кв. ед. 3) 1,5 кв. ед. 5) 9 кв. ед.
- 4) 6 кв. ед.
- **15.** Сторона ромба равна 12. Косинус одного из его углов равен $\frac{2}{3}$. Площадь ромба равна
 - 1) 40

- 2) 48 3) $24\sqrt{5}$ 4) $12\sqrt{5}$ 5) $48\sqrt{5}$
- **16.** Зарина в первый день прочитала $\frac{1}{5}$ всей книги. Во второй день $\frac{2}{3}$ оставшейся части. Какую часть от всей книги ей осталось прочесть?

 - 1) $\frac{3}{5}$ 2) $\frac{4}{15}$ 3) $\frac{1}{5}$ 4) $\frac{8}{15}$ 5) $\frac{4}{5}$

- 17. На рисунке радиусы касающихся окружностей с центрами O_1 и O_2 равны 7 и 3. К окружностям проведена общая касательная ВС. Расстояние между точками касания равно:

- 1) $\sqrt{87}$ 2) $6\sqrt{2}$ 3) $5\sqrt{3}$ 4) $2\sqrt{21}$
- 5) $3\sqrt{11}$
- 18. Сколько воды нужно разбавить с 400 г соли для получения раствора с концентрацией 20%?
 - 1) 80000 г
- 2) 400 Γ
- 3) 1600 г
- 4) 800 г
- 5) 160 г
- 19. Решите систему неравенств: $\begin{cases} 5^{x^2-9} \geqslant 625^{2x}, \\ \frac{4x+5}{7} \frac{3x+2}{4} \leqslant \frac{7-2x}{8}. \end{cases}$
 - 1) $x \in (-\infty; -1] \cup \left[9\frac{1}{4}; +\infty\right)$ 2) $x \in (-\infty; 1] \cup [9; +\infty)$

 - 3) $x \in (-\infty; -1] \cup \left[9; 6\frac{1}{4}\right]$ 4) $x \in (-\infty; -1] \cup \left[9; 9\frac{1}{4}\right]$
 - 5) $x \in (-\infty; -1] \cup [9; +\infty)$

20. Даны вектор	ы $ec{a}\{2;-1;3\},\ ec{b}\{0;2;1\},\ ec{c}\{-1;0;0\}.$ Найдите скалярное
произведение векторо	рв \vec{p} и \vec{q} , если $\vec{p} = 2\vec{a} - \vec{b}$ и $\vec{q} = \vec{a} - 3\vec{c}$.

1)39

2) 15

3) 27

4) 37 5) 42

Самат строит дачный домик формы прямоугольного параллелепипеда с размерами 6 м х 4 м и высотой 3 м. Для этого он закупил стеновые панели «Сэндвич» размерами 3 м х 1 м, и дверное полотно с размерами 2,1 м х 1 м, оконные блоки размерами 1,8 м х 1,2 м.

21. Какова площадь пола дачного домика?

1) 20 m^2

2) 12 m^2 3) 18 m^2

4) 24 m^2 5) 72 m^2

22. Каков объем дачного домика? Ответ приведите в кубических метрах.

1) 24

2) 18

3) 12

4) 20

23. Найдите количество стеновых панелей, которое потребуется для строи-

1) 30

тельства домика без учета отходов, если панели не разрезать. 2) 25

3) 40

4) 20

5) 72

24. Какова длина забора вокруг домика. если забор отстоит от домика на 5 м?

2) 20 m

3) 80 м

4) 60 m

25. Рассчитайте наименьшую площадь отходов от стеновых панелей, оставшихся после строительства в квадратных метрах, с учетом двух окон и двери.

1) $4,26 \text{ m}^2$ 2) $6,42 \text{ m}^2$ 3) $4,32 \text{ m}^2$ 4) $8,65 \text{ m}^2$ 5) $5,52 \text{ m}^2$

26. Найдите значение выражения $\frac{\log_5 \sqrt[5]{14}}{\log_{125} \sqrt{14}}$

1) 2^{-1} 2) 1,5 3) -1,5 4) $\frac{5}{6}$ 5) $-\frac{1}{2}$ 6) 1,2 7) $\frac{2}{3}$

27. Корнями уравнения $\sqrt{x(x+1) + x(x-1)} = 1$ являются

1) $\sqrt{2}$ 2) $-\sqrt{2}$ 3) -2 4) $\frac{1}{2}$ 5) $\frac{\sqrt{2}}{2}$ 6) -1 8) $-\frac{\sqrt{2}}{2}$

28. Найдите отношение $\frac{x}{y}$, где (x; y) — решение системы уравнений: $\begin{cases} 3^x \cdot 3^y = 27, \\ 10^{\lg(x-y)} = 5. \end{cases}$

1) $-\left(\frac{1}{4}\right)^{-1}$ 2) 4 3) 8 4) $\left(\frac{1}{4}\right)^{-1}$ 5) 1 6) 0,25

7) $\frac{1}{4}$ 8) -4

29. Смешали 50% и 70% растворы кислоты и получили 65% раствор. В каких пропорциях их смешали?

1) 1:2

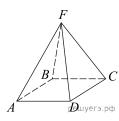
2) 2:9

3) 2:7

4) 1:1 8) 2:5

5) 1:4 6) 2:3

7) 1:3


30. Выберите промежутки, содержащиеся среди решений неравенства $\sin x \cdot \cos x \geqslant \frac{1}{4}$ на интервале $(0; 3\pi)$.

1) $\left[\frac{\pi}{6}; \frac{\pi}{3}\right]$ 2) $\left[\frac{25\pi}{12}; \frac{29\pi}{12}\right]$ 3) $\left[\frac{\pi}{12}; \frac{5\pi}{12}\right]$ 4) $\left[\frac{13\pi}{12}; \frac{17\pi}{12}\right]$

5) $\left[\frac{\pi}{6}; \frac{5\pi}{6}\right]$ 6) $\left[\frac{13\pi}{6}; \frac{7\pi}{3}\right]$ 7) $\left[\frac{7\pi}{6}; \frac{11\pi}{6}\right]$ 8) $\left[\frac{7\pi}{6}; \frac{4\pi}{3}\right]$

- **31.** Найдите промежуток в котором заключена сумма (x+y), где (x;y) решение системы уравнений: $\begin{cases} 4^{x+y} = 128, \\ 5^{3x-2y-3} = 1. \end{cases}$
 - 1) [-4;4] 2) $\left(-3\frac{1}{2};\frac{1}{2}\right)$ 3) (-3;-0,5) 4) [-1;1]
 - 5) $\left(-\infty; \frac{1}{2}\right]$ 6) (-3,5;3,5) 7) $[0; +\infty)$ 8) $(-\infty; 3,5]$
 - **32.** Область определения функции: $y = 3 + \sqrt{\sin \frac{\overline{x}}{4}}$.

 - 1) $[\pi n; \pi + \pi n], n \in \mathbb{Z}$ 2) $[2\pi n; \pi + 2\pi n], n \in \mathbb{Z}$ 3) $[\pi n; \pi + 2\pi n], n \in \mathbb{Z}$ 4) $[8\pi n; 2\pi + 4\pi n], n \in \mathbb{Z}$ 5) $[4\pi n; \pi + 2\pi n], n \in \mathbb{Z}$ 6) $[4\pi n; 4\pi + 8\pi n], n \in \mathbb{Z}$ 7) $[8\pi n; 4\pi + 8\pi n], n \in \mathbb{Z}$ 8) $[8\pi n; 4\pi + 4\pi n], n \in \mathbb{Z}$
- 33. Найдите стороны треугольника MKP, если $\angle M=15^\circ$ и $\angle P=30^\circ$, а высота MH = 4 см.
 - 1) $(36+36\sqrt{3})$ cm 2) 8 cm 3) $8\sqrt{2}$ cm 4) 12 cm 6) 27 cm 7) $(4\sqrt{3}-4)$ cm 8) $4\sqrt{2}$ cm
- 34. Выберите все прямые, которые перпендикулярны уравнению касательной, проведенной к графику функции $y = 2x^3 - 3x^2 + 6x - 7$ в точке $x_0 = 1$.
 - 1) $y = \frac{1}{6}x \sqrt{3}$ 2) $y = \frac{1}{6}x 2$ 3) $y = 6x \sqrt{7}$ 4) $y = -\frac{1}{6}x 2$ 5) $y = -\frac{1}{6}x + \sqrt{3}$ 6) $y = \frac{1}{6}x + \sqrt{2}$ 7) $y = -\frac{1}{6}x + 5$ 8) y = 6x + 1
- 35. В правильной четырехугольной пирамиде ABCDF все ребра равны 1. Найдите значение угла между ребром FD и плоскостью основания.

1) 45° 2) $\frac{\pi}{6}$ 3) $\frac{\pi}{3}$ 4) $\frac{\pi}{4}$ 5) 60° 6) $\frac{\pi}{2}$