Реальная версия ЕНТ по математике 2021 года. Вариант 4270

При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Из 200 шаров — 16 красные. Из всех шаров красные составляют?

1) 16%

2) 18%

3) 6%

- 4) 12% 5) 8%
- **2.** Найдите корни уравнения: |2x 6| = 10.

1) -10; 4 2) -2; 8 3) -8; 2 4) -2; 6

- **3.** Решите систему уравнений: $\begin{cases} 16 2x + 3(y+4) = 17, \\ 2(x-5) 2(y-5) 44 = 0. \end{cases}$

1) (55; 33) 2) (-5; 3)

4) 38 кг

- 5) (55; -33)
- 4. Ящик с яблоками разделили на 4 части пропорционально числам 3; 5; 7; 8. Сколько кг яблок было в ящике, если масса третьей части 21 кг?

1) 40 кг

- 2) 69 кг
- 3) 36 кг
- 5) 37 кг

5. Решите неравенство: $3x + 5 \le 4x + 2$.

- 1) $(-\infty; 2]$ 2) $(-\infty; 3)$ 3) $[3; +\infty)$ 4) $(3; +\infty)$ 5) $(2; +\infty)$ 6. Решите систему неравенств: $\begin{cases} 6 + 2x \geqslant x 2, \\ 4x 5 \leqslant 7. \end{cases}$ 1) (-8; 3) 2) (-8; -3] 3) [-8; 3] 4) (-8; 3] 5) $[3; +\infty)$

- 7. Первый член арифметической прогрессии равен 5, разность прогрессии d = -7. Найдите количество членов данной арифметической прогрессии, если $a_n = -163$.

1) 36

- 2) 41
- 3) 25 4) 30 5) 33

4) 10°

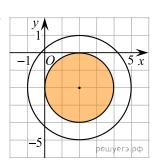
8. Вычислите интеграл: $\int_{-5}^{1} (x+2)^2 dx$.

- 3) 15
- 4) 18 5) - 15
- 9. Внешний угол правильного двадцатиугольника равен?

1) 15°

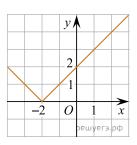
- 2) 12°
- 3) 20°
- 5) 18°
- 10. Из точки к плоскости проведены перпендикуляр и наклонна под углом 30° к ее проекции. Найдите длину наклонной, если длина перпендикуляра 12 см.

1) 8 cm


- 2) 6 см
- 3) 24 см
- 4) 12 см 5) 16 см
- 11. Сумма бесконечно убывающей геометрической прогрессии равна 32, а сумма ее первых пяти членов равна 31. Найдите первый член прогрессии.

1) 32

- 2) 16
- 3) 12
- 4) 24 5)8
- **12.** Число n составляет p% от числа a. Число a равно


1)
$$a = \frac{100p}{n}$$
 2) $a = \frac{100}{np}$ 3) $a = \frac{100n}{2p}$ 4) $a = \frac{100p}{2n}$ 5) $a = \frac{100n}{p}$

13. Укажите систему неравенств, которая задает множество точек, показанных штриховкой (1 клетка — 1 единица).

1)
$$\begin{cases} (x-2)^2 + (y+2)^2 \le 4, \\ (x-2)^2 + (y+2)^2 \le 9 \end{cases}$$
2)
$$\begin{cases} (x-2)^2 + (y+2)^2 \le 4, \\ (x-2)^2 + (y+2)^2 \ge 9 \end{cases}$$
3)
$$\begin{cases} (x-2)^2 + (y-2)^2 \ge 4, \\ (x+2)^2 + (y+2)^2 \le 9 \end{cases}$$
4)
$$\begin{cases} (x-2)^2 + (y+2)^2 \ge 4, \\ (x-2)^2 + (y+2)^2 \ge 9 \end{cases}$$
5)
$$\begin{cases} (x+2)^2 + (y-2)^2 \le 4, \\ (x-2)^2 + (y+2)^2 \le 9 \end{cases}$$

14. По графику найдите множество значений функции.

1)
$$(2; +\infty)$$
 2) $(-\infty; +\infty)$ 3) $(0; +\infty)$ 4) $[0; +\infty)$ 5) $(-2; +\infty)$

3)
$$(0; +\infty)$$

4)
$$[0; +\infty)$$

15. Косинус большего угла треугольника со сторонами 13 см, 14 см, 15 см равен?

1)
$$\frac{13}{15}$$
 2) $\frac{2}{15}$ 3) $\frac{14}{15}$ 4) $\frac{5}{13}$ 5) $\frac{5}{14}$

16. Упростите:

$$\frac{\left(b^{1,2}+\sqrt{2}\right)^3+\left(b^{1,2}-\sqrt{2}\right)^3}{b^{2,4}+6}.$$
1) $b^{2,4}$ 2) $b^{1,2}$ 3) $2b^{2,4}$ 4) $2b^{1,2}$ 5) $2b^{2,2}$

- **17.** Даны векторы $\vec{a}(3;2)$ и $\vec{b}(0;-1)$. Найдите абсолютную величину вектора $(5\vec{a}+10\vec{b})$.
 - 4) 17
- 18. Турист прошел 6 км, поднимаясь в гору, и 3 км по спуску с горы, затратив на весь путь 2 часа. Скорость на спуске на 2 км/ч больше скорости на подъеме. Определите, сколько времени турист потратит на обратный путь, если скорости на спуске и на подъеме останутся прежними.
 - 1) 1.75 ч
- 2) 1.6 ч
- 3) 2 ч
- 4) 1,25 ч
- 5) 1.5 ч

19. Решите систему неравенств:
$$\begin{cases} 8^{x} + \left(\frac{1}{8}\right)^{x} > 2, \\ 2^{x^{2}} \le 64 \cdot 2^{x}. \end{cases}$$

1)
$$(-1; 1) \cup (1; +\infty)$$
 2) $\left(\frac{1}{2}; 3\right)$ 3) $[-3; 3)$ 4) $[-2; 0) \cup (0; 3]$ 5) $[-1; 1] \cup [3; +\infty)$

20. Определите длину диагонали осевого сечения цилиндра с радиусом 5 см и высотой 24 см.

1) 32 см

2) 26 см

3) 30 см

4) 27 см

Торт в форме цилиндра. Высота торта 20 см. Диаметр 30 см. Средняя плотность торта 0,4 г/см³.

21. Чтобы разрезать торт провели пять диаметров и получили?

1) 12 кусочков

2) 6 кусочков

3) 10 кусочков

4) 9 кусочков
 5) 5 кусочков

22. Найдите объём всего торта $(\pi \approx 3)$.

1) $15\ 500\ \text{cm}^3$ 2) $14\ 000\ \text{cm}^3$ 3) $13\ 500\ \text{cm}^3$ 4) $13\ 000\ \text{cm}^3$ 5) $12\ 500\ \text{cm}^3$

23. Для упаковки тортов фабрика изготавливает коробки в виде прямоугольного параллелепипеда. Для данного торта нужно изготовить коробку объём которой равен?

1) $1.8 \cdot 10^4 \text{ cm}^3$ 2) $1.6 \cdot 10^4 \text{ cm}^3$ 3) $1.8 \cdot 10^3 \text{ cm}^3$ 4) $9 \cdot 10^4 \text{ cm}^3$ 5) $1.6 \cdot 10^3 \text{ cm}^3$

24. Торт разделён шестью диаметрами на кусочки равной величины. Найдите массу каждого кусочка, если средняя плотность торта 0,4 г/см³.

1) 450 г

2) 300 Γ 3) 250 Γ 4) 350 Γ

25. Если $\frac{1}{12}$ часть торта поместить в прямоугольный контейнер размерами 12 см \times 10 см \times 10 см. Какой объём контейнера окажется незаполненным?

1) 70 cm^3 2) 80 cm^3 3) 65 cm^3 4) 85 cm^3 5) 75 cm^3

26. Определите, каким промежуткам принадлежит значение выражения $2\sqrt{x} + 1$, $x = \log_5 625$.

1) (1; 7)

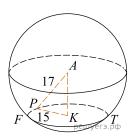
2) (-5; 1) 3) (1; 3) 4) (-2; 5)

5) (-3; 0) 6) (0; 4) 7) (4; 10) 8) (3; 8)

27. Корнями уравнения $(x-1)(5^x-1)(x+1)(5^x+1)=0$ являются

1) -5 2) -1 3) 1 4) 3 5) -4 6) 0 7) 5 8) 4

28. Выберите из ниже предложенных ответов значения выражения $\frac{x}{v}$, где $(x_n; y_n)$ — решения си-


стемы уравнений
$$\begin{cases} x + y + xy = 11, \\ x + y + 1 = xy. \end{cases}$$

1) 4 2) $\frac{3}{5}$ 3) $\frac{1}{4}$ 4) $\frac{3}{2}$ 5) $-\frac{1}{2}$ 6) -2 7) $\frac{2}{3}$ 8) $\frac{5}{3}$

- 29. К 4% солевому раствору массой 250 г добавили соль и получили 20% раствор. Масса добавленной соли равна
 - 1) 40 г
- 2) 0,04 кг
- 3) 20 г
- 4) 0,05 кг 5) 50 г
- 6) 30 г
- 7) 0,02 кг
- 8) 0,03 кг
- **30.** Решением неравенства $13x 15 \le 2x^2$ является промежуток?

1)
$$\left(-\infty; \frac{3}{2}\right] \cup [5; +\infty)$$
 2) $\left(-\infty; -5\right) \cup \left(\frac{3}{2}; +\infty\right)$ 3) $\left(-\infty; -\frac{3}{2}\right) \cup (5; +\infty)$
4) $\left[\frac{3}{2}; 5\right]$ 5) $\left(-\infty; -5\right] \cup \left[\frac{3}{2}; +\infty\right)$ 6) $\left(-\infty; -\frac{3}{2}\right] \cup [5; +\infty)$ 7) $\left(\frac{3}{2}; 5\right)$
8) $\left(-\infty; \frac{3}{2}\right) \cup (5; +\infty)$

- **31.** Найдите числовые промежутки, которым принадлежит значение выражения $\left(\frac{1}{x} + \frac{1}{y}\right)$, где
- (x; y) решение системы уравнений $\begin{cases} x y = 4, \\ 3^x \cdot 3^y = 27. \end{cases}$
 - 1) $(2; +\infty)$ 2) $(\frac{1}{2}; \frac{7}{2})$ 3) (-3; 3) 4) (-0, 5; 2) 5) (-1; 2) 6) $(-\infty; 2]$ 7) [-2; 2] 8) $(-\infty; -2)$
 - **32.** Упростите: $|\sqrt{7} + \sqrt{5} 4| + |\sqrt{7} + \sqrt{5} 5|$.
 - 1) $2\sqrt{7} 2\sqrt{5} 1$ 2) $2\sqrt{7}$ 3) 1 4) $2\sqrt{5} + 2\sqrt{7} + 1$ 5) 2 6) $2\sqrt{5} + 2\sqrt{7} 1$ 7) $2\sqrt{5} 2\sqrt{7} + 1$ 8) $2\sqrt{5} 2\sqrt{7} 1$
- 33. Одна из диагоналей параллелограмма перпендикулярна стороне. Найдите эту диагональ и площадь параллелограмма, если его периметр равен 16 см, а разность смежных сторон равна 2 см.
 - $1) 36 \text{ cm}^2$
- $2) 80 \text{ cm}^2$
- 3) 13 cm 4) 5 cm
- 5) 4 cm 6) 12 cm 7) 12 cm^2 8) 6 cm^2
- **34.** Материальная точка движется со скоростью $v(t) = 1 2\sin^2 t$. Найдите интервал, в который входит значение пути, пройденного материальной точкой за промежуток времени от t=0 до $t = 0.25\pi$.
 - 1) $\begin{bmatrix} 1;1,5 \end{bmatrix}$ 2) $\begin{bmatrix} -1;-0,5 \end{bmatrix}$ 3) $\begin{bmatrix} -1;0 \end{bmatrix}$ 4) (-0,75;0,75) 5) $\begin{bmatrix} -1;-0,25 \end{bmatrix}$ 6) $\begin{bmatrix} 0;1,5 \end{pmatrix}$ 7) (0,5;1) 8) (0,5;1,25]
- **35.** Точка A центр шара. По данным рисунка найдите площадь сферической части меньшего шарового сегмента.

1) 306π 2) $\frac{200}{3}\pi$ 3) $\frac{500}{3}\pi$ 4) 208π 5) $\frac{100}{3}\pi$ 6) 108π 7) 250π 8) 100π