Реальная версия ЕНТ по математике 2021 года. Вариант 4241

При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- **1.** Приведите одночлен $7a^3c^3a^{-2}c^7$ к стандартному виду.
- 1) $7ac^{-4}$ 2) $7a^{-5}c^{-10}$ 3) $7a^{-5}c^{10}$

- 4) $7ac^{10}$ 5) $7a^{-6}c^{21}$
- **2.** Решите уравнение: $\sin\left(2x + \frac{\pi}{4}\right) = 1$.
 - 1) $-\frac{\pi}{8} + \pi k, k \in \mathbb{Z}$ 2) $2\pi k, k \in \mathbb{Z}$ 3) $\frac{\pi}{8} + \pi k, k \in \mathbb{Z}$

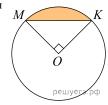
- 4) $\frac{\pi}{4} + 2\pi k, k \in \mathbb{Z}$ 5) $\pm \frac{\pi}{4} + 2\pi k, k \in \mathbb{Z}$
- **3.** Решите систему уравнений: $\begin{cases} 16 2x + 3(y+4) = 17, \\ 2(x-5) 2(y-5) 44 = 0. \end{cases}$

- 1) (55; 33)

- 4. Ящик с яблоками разделили на 4 части пропорционально числам 3; 5; 7; 8. Сколько кг яблок было в ящике, если масса третьей части 21 кг?
 - 1) 40 кг
- 2) 69 кг 3) 36 кг
- 4) 38 кг 5) 37 кг
- **5.** Решите неравенство: $3x + 5 \le 4x + 2$.

 - 1) $(-\infty; 2]$ 2) $(-\infty; 3)$ 3) $[3; +\infty)$ 4) $(3; +\infty)$ 5) $(2; +\infty)$
- **6.** Решите систему неравенств: $\begin{cases} \sqrt{x-1} < 3, \\ \sqrt{2x-4} > 0. \end{cases}$

- 1) (-1;2) 2) (2;10) 3) (1,6;2,5] 4) $[-\frac{1}{2};3)$
- 7. Какая из предложенных последовательностей задается формулой: $b_n = 2^{n-3}$.


5) (-1;3]

- 1) $\frac{1}{4}$; $\frac{1}{2}$; 1; 2; 4;... 2) $-\frac{1}{4}$; $-\frac{1}{2}$; -1; -2; -4;...
- 3) $\frac{1}{4}$; $\frac{1}{2}$; -1; -2; -4;... 4) $\frac{1}{4}$; $\frac{1}{2}$; $-\frac{1}{2}$; $-\frac{1}{4}$; $-\frac{1}{8}$;...
 - 5) $\frac{1}{2}$; $\frac{1}{4}$; 1; 2; 4;...
- 8. Для функции $y=2\cos\left(\frac{\pi}{3}-2x\right)$, найдите $f'\left(\frac{\pi}{3}\right)$.
- 1) $\frac{\sqrt{3}}{2}$ 2) $2\sqrt{3}$ 3) $-2\sqrt{3}$ 4) $\sqrt{3}$ 5) $-\sqrt{3}$
- 9. Внешний угол правильного двадцатиугольника равен?
 - 1) 15°
- 2) 12°
- 3) 20°
- 4) 10° 5) 18°
- 10. Площадь боковой поверхности правильной треугольной призмы равна 108 см². Диагональ боковой грани наклонена к плоскости основания под углом 45°. Найдите объем данной призмы.

- 1) $16\sqrt{2}$ cm³ 2) 54 cm³ 3) 48 cm³ 4) $54\sqrt{3}$ cm³ 5) $48\sqrt{3}$ cm³
- **11.** Найдите сумму бесконечной геометрической прогрессии, определяющейся по формуле $b_n = 6 \cdot \left(\frac{1}{3}\right)^n$.
 - 1) S = 9 2) $S = \frac{1}{3}$ 3) S = 3 4) S = 2 5) $S = \frac{1}{9}$
 - **12.** Найдите значение выражения: $\operatorname{ctg}\left(\arcsin\frac{1}{2}\right)$.
 - 1) 1 2) $\frac{\sqrt{3}}{2}$ 3) $\sqrt{3}$ 4) $\frac{\sqrt{2}}{2}$ 5) $\frac{1}{2}$
 - - 1) -2 2) -1 3) 1 4) 2 5) 0
- **14.** Найдите наименьшее значение функции $y = 7x \ln(x+2)^7$ на отрезке [-1,5;0].
 - 1) 7 2) 2 3) 5 4) -7 5) -9
- **15.** В окружность с центром в точке O вписан треугольник ABC. Вершины треугольника разбивают окружность на дуги в отношении BC: CA: AB = 2:7:9. Больший угол треугольника COA равен?
 - 1) 100° 2) 140° 3) 138° 4) 124° 5) 155°
 - 16. Упростите:

$$\frac{\left(b^{1,2}+\sqrt{2}\right)^3+\left(b^{1,2}-\sqrt{2}\right)^3}{b^{2,4}+6}.$$

- $b^{2,4}$ 2) $b^{1,2}$ 3) $2b^{2,4}$ 4) $2b^{1,2}$ 5) $2b^{2,2}$
- **17.** В круге с центром в точке O и радиусом 4 угол MOK равен 90°. Площадь закрашенной части круга равна

- 1) $8(\pi-1)$ 2) $4(\pi-2)$ 3) $4(\pi-4)$ 4) $8(\pi-2)$ 5) $2(\pi-4)$
- **18.** Турист прошел 6 км, поднимаясь в гору, и 3 км по спуску с горы, затратив на весь путь 2 часа. Скорость на спуске на 2 км/ч больше скорости на подъеме. Определите, сколько времени турист потратит на обратный путь, если скорости на спуске и на подъеме останутся прежними.
 - 1) 1,75 ч 2) 1,6 ч 3) 2 ч 4) 1,25 ч 5) 1,5 ч
 - **19.** Решите систему неравенств: $\begin{cases} 2\cos\frac{x}{4}+1\geqslant 0,\\ 2\sin\frac{x}{4}-\sqrt{2}\leqslant 0. \end{cases}$
 - 1) $\left[-\frac{8\pi}{3}+8\pi n;\pi+8\pi n\right], n\in\mathbb{Z}$ 2) $\left(\frac{\pi}{3}+2\pi n;\frac{\pi}{2}+2\pi n\right], n\in\mathbb{Z}$

3)
$$\left(\frac{\pi}{3} + 2\pi n; \frac{\pi}{2} + 2\pi n\right] \cup \left[\frac{3\pi}{2} + 2\pi n; \frac{5\pi}{2} + 2\pi n\right), n \in \mathbb{Z}$$
4) $\left(\frac{\pi}{3} + 2\pi n; \frac{\pi}{2} + 2\pi n\right), n \in \mathbb{Z}$
5) $\left(-\frac{8\pi}{3} + 8\pi n; \pi + 8\pi n\right), n \in \mathbb{Z}$

20. Стороны оснований правильной усеченной треугольной пирамиды 4 дм и 12 дм. Боковая грань образует с большим основанием угол 60°. Найдите высоту.

1) 5 дм

2) 4 дм

3) 3 дм

4) 7 дм

Строительной компании дали задание построить детскую игровую площадку, в которой должен быть домик в виде башни. Коническая крыша башни имеет диаметр 6 м и высоту 2 м. Для этого купили листы кровельного железа размерами 0,7 м × 1,4 м. На швы и обрезки тратится 10 % от площади крыши.

21. Чему равна площадь одного кровельного листа?

1) 1.6 m^2

2) 0.98 m^2 3) 0.96 m^2 4) 9.8 m^2 5) 98 m^2

22. Чему равна площадь поверхности башни?

1) $3\sqrt{11}\pi \text{ m}^2$

2) $12\pi \text{ m}^2$ 3) $3\sqrt{13}\pi \text{ m}^2$ 4) $3\sqrt{15}\pi \text{ m}^2$ 5) $5\sqrt{13}\pi \text{ m}^2$

23. Сколько нужно использовать материала (кровельного железа) для покрытия крыши с учетом швов и обрезок? (округлите до целых). $(\pi = 3, 14)$

1) 52 m^2 2) 45 m^2 3) 37 m^2 4) 25 m^2 5) 31 m^2

4) 38

24. Какое количество листов понадобится для башни?

1) 34

2) 30

3) 32

5) 40

25. Во сколько раз увеличится объем конуса, если его радиус увеличить в 4 раза, а высоту оставить прежней?

1) в 24 раза

2) в 64 раза 3) в 13 раз 5) в 16 раз

26. Из нижеперечисленных ответов укажите те, 35% которых являются целым числом.

1) 50

2) 60

3) 40 4) 30 5) 90

6) 20

27. Корнями уравнения $(x-1)(5^x-1)(x+1)(5^x+1)=0$ являются

2) -1 3) 1 4) 3 5) -4 6) 0 7) 5

7) 70

28. Выберите из ниже предложенных ответов значения выражения $\frac{x}{v}$, где

 $(x_n;y_n)$ — решения системы уравнений $\begin{cases} x+y+xy=11,\\ x+y+1=xy. \end{cases}$

1) 4 2) $\frac{3}{5}$ 3) $\frac{1}{4}$ 4) $\frac{3}{2}$ 5) $-\frac{1}{2}$ 6) -2 7) $\frac{2}{3}$ 8) $\frac{5}{3}$

29. К 4% солевому раствору массой 250 г добавили соль и получили 20% раствор. Масса добавленной соли равна

1) 40 г

2) 0,04 кг

3) 20 г 7) 0,02 кг

4) 0,05 кг 8) 0,03 кг

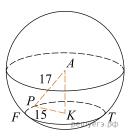
5) 50 r

6) 30 г

30. Какие из данных чисел не являются решениями неравенства 0,7x+8 > 0,8x-1?

1)88

2) -500 3) 904) 0 8) -45 5)8


6) 95

7) 500

31. Найдите отношение $\frac{x}{y}$, где (x; y) — решение системы уравнений: $\int \lg(x - y) = 2,$

$$\begin{cases} \lg(x - y) = 2, \\ \lg x = \lg 3 + \lg y. \end{cases}$$

- 1) 3^0 2) $\frac{1}{3}$ 3) $\left(\frac{1}{3}\right)^{-1}$ 4) 0,25 5) 2 6) 1 7) 3 8) 0,5
- **32.** Упростите: $|\sqrt{7} + \sqrt{5} 4| + |\sqrt{7} + \sqrt{5} 5|$.
- 1) $2\sqrt{7} 2\sqrt{5} 1$ 2) $2\sqrt{7}$ 3) 1 4) $2\sqrt{5} + 2\sqrt{7} + 1$ 5) 2 6) $2\sqrt{5} + 2\sqrt{7} 1$ 7) $2\sqrt{5} 2\sqrt{7} + 1$ 8) $2\sqrt{5} 2\sqrt{7} 1$
- 33. Одна из диагоналей параллелограмма перпендикулярна стороне. Найдите эту диагональ и площадь параллелограмма, если его периметр равен 16 см, а разность смежных сторон равна 2 см.
 - 1) 36 cm^2 2) 80 cm^2 3) 13 cm 4) 5 cm 6) 12 cm 7) 12 cm^2 8) 6 cm^2
- **34.** Решите неравенство $\int\limits_{-\infty}^{\infty} (t+1)dt \geqslant 0$ и найдите все целые положительные решения неравенства.
 - 1) 0 2) 4 3) 5 4)6 5)3 6) 2 7) 7 8) 1
- **35.** Точка A центр шара. По данным рисунка найдите площадь сферической части меньшего шарового сегмента.

1) 306π 2) $\frac{200}{3}\pi$ 3) $\frac{500}{3}\pi$ 4) 208π 6) 108π 7) 250π 8) 100π