1. Числовая последовательность задана условиями $x_{n+1}=x_n-2,\ x_1=3.$ Какое из указанных чисел равно x_3 ?
1) -3 2) 1 3) -2 4) 0 5) -1
2. Решите уравнение: $1, 1 x + 4, 9 x = 27$.
1) -6,5; 4,5 2) -4,5; 4,5 3) -5,5; 4,5 4) -4,5; 3,5 5) -4,5; 2,5
3. Vunoctute выражение: $\left(x^{\frac{5}{12}}\right)^{1,2}: \left(x^{-\frac{1}{3}}\right)^{-1,5}$

3. Упростите выражение:
$$\left(x^{\frac{5}{12}}\right)^{1,2}$$
: $\left(x^{-\frac{1}{3}}\right)^{-1,5}$.

1) 1 2) x^2 3) $x^{\frac{1}{2}}$ 4) $\frac{1}{x}$ 5) x

4. Упростите:
$$(ab^{-1}+ba^{-1})^{-1}\cdot(ab)^{-1}$$
.

1) $\frac{1}{a^2-b^2}$ 2) $\frac{ab}{a^2-b^2}$ 3) $\frac{ab}{a^2+b^2}$ 4) $\frac{1}{a^2+b^2}$ 5) a^2+b^2

5. В арифметической прогрессии сумма $a_4 + a_6 = 20$. Найдите пятый член данной прогрессии.

6. Если сумма с пятого по восьмой член арифметической прогрессии равна 48, а разность прогрессии равна 2, то ее первый член равен

7. Геометрическая прогрессия задана условием: $b_1=3,\ b_{n+1}=2\cdot b_n.$ Найдите пятый член данной прогрессии.

8. Сумма бесконечно убывающей геометрической прогрессии равна 32, а сумма ее первых пяти членов равна 31. Найдите первый член прогрессии.

9. Из предложенных ниже вариантов найдите серию, содержащую все решения уравнения $\sin 3x + \cos 3x = 0$.

1)
$$-\frac{\pi}{12} + 3\pi n, n \in \mathbb{Z}$$
 2) $-\frac{\pi}{12} + \frac{\pi n}{3}, n \in \mathbb{Z}$ 3) $-\frac{\pi}{12} + 2\pi n, n \in \mathbb{Z}$
4) $\frac{\pi}{12} + \frac{\pi n}{3}, n \in \mathbb{Z}$ 5) $\frac{\pi}{12} + \pi n, n \in \mathbb{Z}$

10. Сумма членов бесконечно убывающей геометрической прогрессии в 3 раза больше ее первого члена. Найдите отношение $\frac{b_7}{b_5}$.

1)
$$\frac{9}{4}$$
 2) $\frac{1}{3}$ 3) $\frac{4}{9}$ 4) $\frac{4}{3}$ 5) $\frac{3}{4}$

11. Геометрическая прогрессия $\{b_n\}$ — возрастающая, $b_2=4,\ b_4=36.$ Найдите $b_5.$

12. Найдите первые четыре члена последовательности $\{a_n\}$, если $a_1 = 7$ и $a_{n+1} = 5 + 2a_n$.

13. Корень уравнения $\cos 2x - \sin x = 0$, принадлежащий промежутку $\left(0; \frac{\pi}{2}\right)$, равен?

1)
$$\frac{\pi}{3}$$
 2) $\frac{\pi}{2}$ 3) $\frac{\pi}{6}$ 4) 0 5) $\frac{\pi}{4}$

14. Определите, какая из предложенных последовательностей не является геометрической прогрессией.

1) 1; -3; 9; -27; 81; ...; 2) 1;
$$\frac{1}{3}$$
; $\frac{1}{9}$; $\frac{1}{81}$; $\frac{1}{243}$; ...; 3) 2; 4; 8; 16; 32; ...; 4) -4; 2; -1; $\frac{1}{2}$; $\frac{1}{4}$; ...; 5) 8; -2; 2; -1; $\frac{1}{4}$; ...;

15. Найдите сумму бесконечной геометрической прогрессии, определяющейся по формуле $b_n = 6 \cdot \left(\frac{1}{3}\right)^n$.

1)
$$S = 9$$
 2) $S = \frac{1}{3}$ 3) $S = 3$ 4) $S = 2$ 5) $S = \frac{1}{9}$

16. Найдите первый положительный член арифметической прогрессии: -20,3; -18,7; ...

1) 0,4 2) 1 3) 0,2 4) 0,5 5) 0,3

17. Решите уравнение $\sqrt{2}\cos^2 x - \cos x = 0$ и найдите сумму его корней на $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$.

1)
$$\frac{\pi}{4}$$
 2) $-\pi$ 3) 0 4) $\frac{\pi}{8}$ 5) $-\frac{\pi}{8}$

18. В арифметической прогрессии $a_1 = -2$, d = 16, найдите номер члена арифметической прогрессии, равного 174.

19. Упростите выражение $\sqrt{\sqrt{28 - 16\sqrt{3}}}$.

1)
$$2+\sqrt{3}$$
 2) $\sqrt{3}-1$ 3) $\sqrt{3}+1$ 4) $2-\sqrt{3}$ 5) $2\sqrt{3}-1$

20. Найдите значение выражения $\sin^2 \alpha - \cos \alpha + \sqrt{3} \operatorname{tg} \alpha$ при $\alpha = \frac{\pi}{3}$.

1)
$$3\frac{1}{2}$$
 2) $3\frac{1}{4}$ 3) $3\frac{1}{3}$ 4) $4\frac{1}{2}$ 5) $4\frac{1}{3}$