
1. Даны векторы $\vec{a}\{4;3\},\ \vec{b}\{8;-10\},\ \vec{c}\left\{-4;\frac{23}{3}\right\}$. Разложите вектор \vec{c} по векторам \vec{a} и \vec{b} .

1)
$$\vec{c} = \frac{1}{3}\vec{a} - \frac{2}{3}\vec{b}$$
 2) $\vec{c} = \frac{4}{3}\vec{a} - \frac{\vec{t}}{3}\vec{b}$ 3) $\vec{c} = -\frac{2}{3}\vec{a} - \frac{1}{3}\vec{b}$ 4) $\vec{c} = \frac{2}{3}\vec{a} - \frac{2}{3}\vec{b}$ 5) $\vec{c} = \frac{2}{3}\vec{a} - \frac{1}{3}\vec{b}$ 6) $\vec{c} = \frac{1}{3}\vec{a} - \frac{1}{3}\vec{b}$

- **2.** Даны векторы $\vec{a}(5;3;1),\ \vec{b}(4;-1;0).$ Найдите координаты вектора $\vec{m},\$ если $\vec{m}=\vec{a}-2\vec{b}.$
 - 1) $\vec{m}(-3;5;1)$ 2) $\vec{m}(-3;-3;1)$ 3) $\vec{m}(4;2;-1)$ 4) $\vec{m}(5;-2;1)$ 5) $\vec{m}(5;3;1)$ 6) $\vec{m}(5;-3;1)$
- **3.** Используя данные рисунка найдите сумму векторов $\overrightarrow{C_1B_1} + \overrightarrow{CD} + \overrightarrow{AC_1}$.

- 1) $\overrightarrow{AA_1}$ 2) $\overrightarrow{A_1B_1}$ 3) $\overrightarrow{CC_1}$ 4) $\overrightarrow{BB_1}$ 5) $\overrightarrow{BC_1}$ 6) \overrightarrow{AD}
- **4.** Найдите расстояние от точки A (1; 2; 3) до плоскости, заданной уравнением 2x + y + 2z = 4.

1) 4 2)
$$\frac{1}{9}$$
 3) 0,5 4) 1 5) 2 6) $\sqrt{2}$

- **5.** Даны векторы $\vec{a}(5;3), \ \vec{b}(4;-1).$ Найдите модуль разности векторов \vec{p} и $\vec{q},$ если $\vec{p}=\vec{a}+\vec{b}$ и $\vec{q}=\vec{a}-\vec{b}.$
 - 1) $\sqrt{15}$ 2) $2\sqrt{15}$ 3) $2\sqrt{17}$ 4) $3\sqrt{7}$ 5) 13 6) 8
- **6.** На прямой последовательно расположены на равном расстоянии точки C, D, E, F и K. Найдите координаты точки K, если D(-8;3) и E(1;5).
 - 1) (11; 5) 2) (14; 8) 3) (19; 1) 4) (19; 9) 5) (2; 19) 6) (12; 9)
- 7. Даны координаты точек: A (1; -1; -4), B (-3; -1; 0), C (-1; 2; 5), D (2; -3; 1). Найдите косинус угла векторами \overrightarrow{AB} и \overrightarrow{CD} .

1)
$$-0.7$$
 2) $\frac{3}{10}$ 3) 0.3 4) $-\frac{7}{10}$ 5) -0.3 6) $-\frac{3}{10}$

- **8.** Даны точка A (3; 5; -1) и точка B (-2; 4; -3). Найдите длину вектора \overrightarrow{AB} .
 - 1) $\sqrt{30}$ 2) $\sqrt{31}$ 3) $\sqrt{120}$ 4) $\sqrt{5}$ 5) $\sqrt{10}$ 6) $6\sqrt{6}$
- **9.** Найдите x и y, если известно, что векторы $\vec{c} = (-2; y; -1)$ и $\vec{d} = (4; 5; x)$ коллинеарны. Выберите промежутки, в которые входят соответствующие значения x и y одновременно.

1)
$$(5; 6,5]$$
 2) $(1; 5,75)$ 3) $[-2,5;7]$ 4) $[-5; 2,5)$ 5) $[-6; 2,25)$ 6) $(-3; 2]$

10. На рисунке изображен прямоугольник *ABCD*. Найдите длины векторов: _П $\overrightarrow{AO} + \overrightarrow{BO}$, $\overrightarrow{AO} - \overrightarrow{BO}$, $\overrightarrow{AD} - \overrightarrow{AB}$, если AB = 8, BC = 6.

11. На рисунке изображен прямоугольник АВСД. Найдите длины векторов: $\overrightarrow{AO} + \overrightarrow{BO}$, $\overrightarrow{AO} - \overrightarrow{BO}$, $\overrightarrow{AD} - \overrightarrow{AB}$, если AB = 12, BC = 5.

12. На рисунке изображен ромб АВСО. Найдите длины векторов: $\overrightarrow{AB} + \overrightarrow{AD}$, $\overrightarrow{AB} - \overrightarrow{AD}$, $\overrightarrow{AB} - \overrightarrow{AC}$, если DB = 10, AC = 24.

13. На рисунке изображен ромб АВСО. Найдите длины векторов: $\overrightarrow{AB} + \overrightarrow{AD}$, $\overrightarrow{AB} - \overrightarrow{AD}$, $\overrightarrow{AB} - \overrightarrow{AC}$, если DB = 12, AC = 16.

14. На рисунке изображен равносторонний треугольник АВС. Найдите длины векторов $\overrightarrow{AB} - \overrightarrow{AC}$ и $\overrightarrow{AB} + \overrightarrow{AC}$, если стороны треугольника равны $2\sqrt{3}$.

1)
$$2\sqrt{3}$$
, 6 2) $\sqrt{3}$, 6 3) $\sqrt{3}$, 5 4) $3\sqrt{3}$, 6 5) 2, 6 6) $2\sqrt{2}$, 7

2)
$$\sqrt{3}$$
, 6

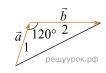
3)
$$\sqrt{3}$$
, 5

4)
$$3\sqrt{3}$$
, (

$$5) 2\sqrt{2}, 7$$

15. На рисунке изображен равносторонний треугольник АВС. Найдите длины векторов $\overrightarrow{AB}-\overrightarrow{AC}$ и $\overrightarrow{AB}+\overrightarrow{AC}$, если стороны треугольника равны $9\sqrt{3}$.

1)
$$9\sqrt{3}$$
, 9

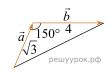

2)
$$10\sqrt{3}$$
, 25

1)
$$9\sqrt{3}$$
, 9 2) $10\sqrt{3}$, 25 3) $9\sqrt{3}$, 27 4) $9\sqrt{3}$, 21 5) $6\sqrt{3}$, 27 6) $\sqrt{3}$, 27

4)
$$9\sqrt{3}$$
, 21

5)
$$6\sqrt{3}$$
, 2°

16. Найдите $|\vec{a} + \vec{b}|$:



1) 7 2)
$$2\sqrt{2}$$
 3) $\sqrt{6}$ 4) $\sqrt{7}$ 5) 3

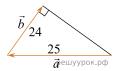
3)
$$\sqrt{6}$$

4)
$$\sqrt{7}$$

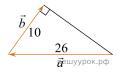
17. Найдите $|\vec{a} + \vec{b}|$:

1) 6 2)
$$\sqrt{31}$$
 3) 5 4) $\sqrt{30}$ 5) $\sqrt{32}$ 6) $\sqrt{29}$

18. Найдите $|\vec{a} + \vec{b}|$:


1)
$$\sqrt{25}$$
 2) 6 3) 5 4) 3 5) 4 6) 10

19. Найдите $|\vec{a} + \vec{b}|$:


1) 6 2) 3 3) 2 4) 8 5) 5 6)
$$\sqrt{4}$$

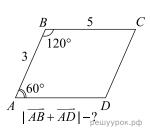
20. Найдите $|\vec{a} + \vec{b}|$:

1) 24 2) 6 3) 25 4) 11 5) 7 6)
$$\sqrt{49}$$

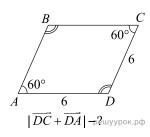
21. Найдите $|\vec{a} + \vec{b}|$:

1)
$$\sqrt{576}$$
 2) 26 3) 24 4) 25 5) $\sqrt{572}$ 6) 27

22. Найдите $|\vec{a} + \vec{b}|$:


1) 6 2)
$$\sqrt{9}$$
 3) 2 4) 4 5) 5 6) 3

23. Найдите $|\vec{a} + \vec{b}|$:


1) 4 2)
$$\sqrt{36}$$
 3) 3 4) $\sqrt{25}$ 5) 8 6) 5

24. Найдите длины сумм и разностей векторов по данным рисунка.

1) 5 2) 6 3)
$$\sqrt{49}$$
 4) 7 5) 10 6) 8

25. Найдите длины сумм и разностей векторов по данным рисунка.

1) 6 2)
$$\sqrt{36}$$
 3) 3 4) $\sqrt{25}$ 5) 8 6) 4

26. Упростите суммы:

a)
$$\overrightarrow{AB} + DQ + \overrightarrow{BC} + QE + EA + \overrightarrow{CD}$$
; 6) $\overrightarrow{AB} + \overrightarrow{BA} + \overrightarrow{CD} + \overrightarrow{MN} + \overrightarrow{DC} + \overrightarrow{NM}$;

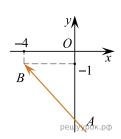
B)
$$\overrightarrow{FK} + \overrightarrow{MQ} + \overrightarrow{KP} + \overrightarrow{AM} + \overrightarrow{QK} + \overrightarrow{PF}; \Gamma$$
) $MF + \overrightarrow{AC} + \overrightarrow{FM} + \overrightarrow{CD} + \overrightarrow{PA} + \overrightarrow{MP}$.
1) a) \overrightarrow{O} ; 6) \overrightarrow{MN} ; B) \overrightarrow{AK} ; Γ) \overrightarrow{MD} 2) a) \overrightarrow{AD} ; 6) \overrightarrow{O} ; B) \overrightarrow{PF} ; Γ) \overrightarrow{MD}

1) a)
$$0; 6) MN; B) AK; \Gamma) MD$$
 2) a) $AD; 6) 0; B) $\overrightarrow{PF}; \Gamma$ MD
3) a) $\overrightarrow{0}; 6) \overrightarrow{AD}; B) \overrightarrow{AK}; \Gamma$ \overrightarrow{MD} 4) a) $\overrightarrow{0}; 6) \overrightarrow{0}; B) \overrightarrow{AK}; \Gamma$ \overrightarrow{PA}
5) a) $\overrightarrow{0}; 6) \overrightarrow{0}; B) \overrightarrow{AK}; \Gamma$ \overrightarrow{MD} 6) a) $\overrightarrow{0}; 6) \overrightarrow{0}; B) \overrightarrow{PF}; \Gamma$ $\overrightarrow{MD}$$

- **27.** Упростите выражение: $\overrightarrow{AB} + \overrightarrow{BC} \overrightarrow{MC} + \overrightarrow{MD} \overrightarrow{KD}$.
 - 1) \overrightarrow{AD} 2) \overrightarrow{BC} 3) \overrightarrow{AK} 4) \overrightarrow{MA} 5) \overrightarrow{CD} 6) \overrightarrow{DC}
- **28.** Упростите выражение: $\overrightarrow{MK} (\overrightarrow{DE} + \overrightarrow{FC}) \overrightarrow{BK} + (\overrightarrow{FE} + \overrightarrow{BC}).$
 - 1) \overrightarrow{FE} 2) \overrightarrow{KD} 3) \overrightarrow{CM} 4) \overrightarrow{DC} 5) \overrightarrow{MF} 6) \overrightarrow{MD}
- **29.** Упростите выражение: $\overrightarrow{FC} + \overrightarrow{MD} \overrightarrow{BE} (\overrightarrow{EA} \overrightarrow{BM}) + \overrightarrow{CA}$.
 - 1) \overrightarrow{EB} 2) \overrightarrow{FA} 3) \overrightarrow{AD} 4) \overrightarrow{FD} 5) \overrightarrow{AE} 6) \overrightarrow{MB}
- **30.** Упростите выражение: $\overrightarrow{NF} + \overrightarrow{FA} + (\overrightarrow{LK} \overrightarrow{LA}) \overrightarrow{MD} + \overrightarrow{KD}$.
 - 1) \overrightarrow{AF} 2) \overrightarrow{NF} 3) \overrightarrow{MD} 4) \overrightarrow{ND} 5) \overrightarrow{NM} 6) \overrightarrow{LD}
- **31.** Упростите выражение: $-\overrightarrow{CG} + \overrightarrow{BG} (\overrightarrow{EC} \overrightarrow{AB}) \overrightarrow{AM}$.
 - 1) \overrightarrow{CE} 2) \overrightarrow{MB} 3) \overrightarrow{ME} 4) \overrightarrow{BC} 5) \overrightarrow{BE} 6) \overrightarrow{AB}
- **32.** Какой вектор нужно вычесть из выражения $\overrightarrow{AB} + \overrightarrow{CD} \overrightarrow{AC} + \overrightarrow{EC} \overrightarrow{EB} + \overrightarrow{BC}$, чтобы получился $\overrightarrow{0}$?

1)
$$\overrightarrow{BD}$$
 2) $\overrightarrow{0}$ 3) \overrightarrow{BC} 4) \overrightarrow{CB} 5) \overrightarrow{EC} 6) \overrightarrow{AC}

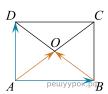
- **33.** Найдите координаты вектора \vec{a} , если $\vec{a} = \vec{p} + \vec{i}$, $\vec{p} = (-1; 3)$, $\vec{i} = (2; 2)$.
- **34.** Найдите координаты вектора \vec{a} , если $\vec{a} = \vec{p} \vec{i}$, $\vec{p} = (-3; 4)$, $\vec{i} = (1; 2)$. 1) (-4; 1) 2) (0; 2) 3) (-3; 0) 4) (-4; 3) 5) (-1; 2) 6) (-4; 2)
- **35.** Найдите координаты вектора \vec{a} , если $\vec{a} = 4\vec{p} + \vec{i}$, $\vec{p} = (5; -2)$, $\vec{i} = (-7; 3)$. 1) (12; -5) 2) (13; -5) 3) (10; -2) 4) (11; -4) 5) (13; -6) 6) (14; -1)
- **36.** Найдите координаты вектора \vec{a} , если $\vec{a}=2\vec{p}-\vec{i}$, $\vec{p}=(3;1)$, $\vec{i}=(2;-2)$.
- **37.** Найдите координаты вектора \vec{a} , если $\vec{a} = 3\vec{i} 2\vec{p}$, $\vec{i} = (3; -2)$, $\vec{p} = (-4; 1)$. 1) (10; -2) 2) (13; -8) 3) (17; -8) 4) (18; -6) 5) (17; -5) 6) (14; -9)
- **38.** Найдите координаты вектора \vec{a} , если $\vec{a} = 5\vec{i} 7\vec{p}$, $\vec{p} = (6; 8)$, $\vec{i} = (5; 4)$. 1) (-15; -30) 2) (-18; -37) 3) (-12; -38) 4) (-16; -32) 5) (-17; -36) 6) (-17; -35)
- **39.** Вектор \overrightarrow{AB} с началом в точке A(3;6) имеет координаты (9; 3). Найдите координаты точки B.


- 1) (12; 6) 2) (12; 9) 3) (11; 7) 4) (15; 5) 5) (10; 9) 6) (8; 10)
- **40.** Вектор \overrightarrow{AB} с началом в точке A(2; -4) имеет координаты (6; -5). Найдите координаты точки B.

- 1) (4; -9) 2) (9; -10) 3) (3; -5) 4) (8; -7) 5) (6; -9) 6) (8; -9)
- **41.** Вектор \overrightarrow{AB} с концом в точке B(5;3) имеет координаты (3; 1). Найдите координаты точки A.

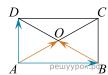
- 1) (2; 4) 2) (1; 2) 3) (4; 3) 4) (2; 2) 5) (2; 0) 6) (0; 2)
- **42.** Вектор \overrightarrow{AB} с концом в точке B(-4; -1) имеет координаты (-5; 8). Найдите координаты точки A.

1) (0; -9) 2) (1; -9) 3) (1; -7) 4) (3; -6) 5) (2; -9) 6) (1; -3)

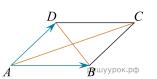

43. Стороны правильного треугольника ABC равны 6. Найдите скалярное произведение векторов \overrightarrow{AB} и \overrightarrow{AC} .

1) $18\sqrt{3}$ 2) 18 3) 9 4) $3\sqrt{36}$ 5) $6\sqrt{3}$ 6) 324

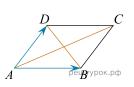
44. Стороны правильного треугольника ABC равны 4. Найдите скалярное произведение векторов \overrightarrow{AB} и \overrightarrow{AC} .


1) $8\sqrt{3}$ 2) $\sqrt{192}$ 3) $9\sqrt{3}$ 4) $7\sqrt{3}$ 5) $5\sqrt{3}$ 6) $2\sqrt{48}$

45. На рисунке изображён прямоугольник ABCD, диагонали которого пересекаются в точке O. Найдите скалярное произведение векторов: а) $\overrightarrow{AD} \cdot \overrightarrow{AB}$, б) $\overrightarrow{AO} \cdot \overrightarrow{BO}$, если AB = 8, BC = 6.


1) a) -1; 6) -7 2) a) 0; 6) -4 3) a) 0; 6) -7 4) a) 1; 6) -7 5) a) 1; 6) -5 6) a) $\frac{\sqrt{2}}{2}$; 6) -8

46. На рисунке изображён прямоугольник *ABCD*, диагонали которого пересекаются в точке O. Найдите скалярное произведение векторов: a) $\overrightarrow{AD} \cdot \overrightarrow{AB}$, б) $\overrightarrow{AO} \cdot \overrightarrow{BO}$, если AB = 12, BC = 5.


1) a) 0; б) $-\frac{119}{4}$ 2) a) 1; б) $-\frac{119}{4}$ 3) a) 0; б) $-\frac{117}{4}$ 4) a) 0; б) $-\frac{119}{2}$ 5) a) 1; б) $-\frac{119}{2}$ 6) a) 0; б) $-\frac{121}{4}$

47. На рисунке изображён ромб ABCD. Найдите скалярное произведение векторов: а) $\overrightarrow{DB} \cdot \overrightarrow{AC}$, б) $\overrightarrow{AB} \cdot \overrightarrow{AC}$, в) $\overrightarrow{AB} \cdot \overrightarrow{AD}$, если $DB = 10, \ AC = 24$.

1) a) 0; б) 292; в) 121 2) a) 1; б) 288; в) 119 3) a) 0; б) 288; в) 119 4) a) 0; б) 282; в) 119 5) a) 0; б) 288; в) 113 6) a) -1; б) 288; в) 119

48. На рисунке изображён ромб ABCD. Найдите скалярное произведение векторов: a) $\overrightarrow{DB} \cdot \overrightarrow{AC}$, б) $\overrightarrow{AB} \cdot \overrightarrow{AC}$, в) $\overrightarrow{AB} \cdot \overrightarrow{AD}$, если $DB = 12, \ AC = 16$.

1) a) 1; б) 128; в) 32 2) a) 0; б) 128; в) 24 3) a) 0; б) 128; в) 28 4) a) 0; б) 128; в) 28 5) a) 1; б) 128; в) 28 6) a) 0; б) 256; в) 28

49. Найдите угол между векторами \vec{a} и \vec{b} , если:

а) $\vec{a} = (2; 3)$ и $\vec{b} = (2; 4);$ б) $\vec{a} = (0; 1)$ и $\vec{b} = (2; 0);$

в) $\vec{a} = (1; \sqrt{3})$ и $\vec{b} = (\sqrt{3}; 1); \Gamma$) $\vec{a} = (6; 4)$ и $\vec{b} = (2; -3)$.

1) a) $\arccos \frac{8}{\sqrt{65}}$; 6) 45° ; B) 60° ; F) 30° 2) a) $\arccos \frac{8}{\sqrt{65}}$; 6) 30° ; B) 45° ; F) 90°

3) a) $\arccos \frac{8}{\sqrt{65}}$; 6) 90° ; B) 60° ; C) 90° 4) a) $\arccos \frac{8}{\sqrt{65}}$; 6) 90° ; B) 90° ; C) 90°

5) a)
$$\arccos \frac{8}{\sqrt{65}}$$
; 6) 90° ; B) 30° ; F) 90° 6) a) $\arccos \frac{8}{\sqrt{65}}$; 6) 90° ; B) 60° ; F) 60°

50. Найдите координаты вектора \vec{p} , если при параллельном переносе на вектор \vec{p} точка A(-5;6;-77) переходит в точку B, а B(1;2;3).

1)
$$\vec{p}(6;-2;8)$$
 2) $\vec{p}(6;-4;10)$ 3) $\vec{p}(6;-4;8)$ 4) $\vec{p}(5;-2;10)$ 5) $\vec{p}(7;-8;10)$ 6) $\vec{p}(6;-4;11)$

51. Найдите координаты вектора \vec{p} , если при параллельном переносе на вектор \vec{p} точка A(-5;6;-77) переходит в точку B, а B(-1;2;6).

1)
$$\vec{p}(4;-4;13)$$
 2) $\vec{p}(3;-4;13)$ 3) $\vec{p}(4;-4;10)$ 4) $\vec{p}(2;-6;13)$ 5) $\vec{p}(3;-3;14)$ 6) $\vec{p}(1;-4;13)$

52. Найдите координаты вектора \vec{p} , если при параллельном переносе на вектор \vec{p} точка A(-5;6;-77) переходит в точку B, а B — середина отрезка DC, $D(-3;\ 1;-20)$, C(5;1;-2).

1)
$$\vec{p}(4;-2;-3)$$
 2) $\vec{p}(4;-4;-4)$ 3) $\vec{p}(2;-6;-4)$ 4) $\vec{p}(4;-5;-4)$ 5) $\vec{p}(6;-5;-4)$ 6) $\vec{p}(4;-4;-5)$

53. Найдите координаты вектора \vec{p} , если при параллельном переносе на вектор \vec{p} точка A(-5; 6; -7) переходит в точку B, а B — середина отрезка DC, D(2; -3; 10), C(312; 11; -76).

1)
$$\vec{p}(162; -1; -26)$$
 2) $\vec{p}(162; -2; -24)$ 3) $\vec{p}(158; -2; -26)$ 4) $\vec{p}(162; 0; -25)$ 5) $\vec{p}(128; -4; -26)$ 6) $\vec{p}(162; -2; -26)$

54. В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1$, все рёбра которой равны 3, найдите $|2\overrightarrow{BC} + \overrightarrow{DD_1}|$.

1)
$$2\sqrt{5}$$
 2) $\sqrt{3}$ 3) $3\sqrt{5}$ 4) $\sqrt{5}$ 5) $4\sqrt{5}$ 6) $\sqrt{45}$

55. В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1$, все рёбра которой равны 3, найдите $|\overrightarrow{AC} + \overrightarrow{DF_1}|$.

1) 3 2) 6 3) 5 4)
$$\sqrt{8}$$
 5) 2 6) $\sqrt{11}$

56. В тетраэдре $\overrightarrow{DA} = \vec{a}, \ \overrightarrow{DB} = \vec{b}, \ \overrightarrow{DC} = \vec{c}, \$ точки M и N — середины рёбер AB и BC соответственно, точки K и L — середины отрезков AN и DM. Выразите вектор \overrightarrow{AB} через векторы $\vec{a}, \ \vec{b}$ и \vec{c} .

1)
$$\vec{a} - \vec{c}$$
 2) $\vec{b} + \vec{a}$ 3) $\vec{b} - \vec{c}$ 4) $\vec{b} + \vec{c}$ 5) $\vec{b} - \vec{a}$ 6) $2\vec{c}$

57. В тетраэдре $\overrightarrow{DA} = \vec{a}, \ \overrightarrow{DB} = \vec{b}, \ \overrightarrow{DC} = \vec{c}, \$ точки M и N — середины рёбер AB и BC соответственно, точки K и L — середины отрезков AN и DM. Выразите вектор \overrightarrow{BC} через векторы $\vec{a}, \ \vec{b}$ и \vec{c} .

1)
$$\vec{c} + \vec{b}$$
 2) $\vec{a} - \vec{b}$ 3) $\vec{c} - \vec{b}$ 4) $\vec{a} + \vec{b}$ 5) $\vec{c} - \vec{a}$ 6) $\vec{a} - \vec{c}$

58. В тетраэдре $\overrightarrow{DA} = \vec{a}$, $\overrightarrow{DB} = \vec{b}$, $\overrightarrow{DC} = \vec{c}$, точки M и N — середины рёбер AB и BC соответственно, точки K и L — середины отрезков AN и DM. Выразите вектор \overrightarrow{CA} через векторы \vec{a} , \vec{b} и \vec{c} .

1)
$$\vec{a} - \vec{b}$$
 2) $\vec{a} - \vec{c}$ 3) $\vec{a} + \vec{b}$ 4) $\vec{a} + \vec{c}$ 5) $\vec{b} - \vec{c}$ 6) $\vec{c} - \vec{a}$

59. В тетраэдре $\overrightarrow{DA} = \vec{a}, \ \overrightarrow{DB} = \vec{b}, \ \overrightarrow{DC} = \vec{c}, \$ точки M и N — середины рёбер AB и BC соответственно, точки K и L — середины отрезков AN и DM. Выразите вектор \overrightarrow{DM} через векторы $\vec{a}, \ \vec{b}$ и \vec{c} .

1)
$$\frac{1}{2}\vec{a} - \frac{1}{2}\vec{b}$$
 2) $\vec{a} + \vec{b}$ 3) $\frac{1}{2}(\vec{a} + \vec{b})$ 4) $\vec{a} + \frac{1}{2}\vec{c}$ 5) $\frac{1}{2}\vec{a} + \frac{1}{2}\vec{b}$ 6) $\vec{a} - \vec{b}$

60. В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1$, все рёбра которой равны 3, найдите $|\overrightarrow{CD} + \overrightarrow{BA} + \overrightarrow{EF_1} + \overrightarrow{D_1C}|$.

1)
$$\sqrt{3}$$
 2) $\sqrt{27}$ 3) $4\sqrt{3}$ 4) $2\sqrt{3}$ 5) $\frac{\sqrt{3}}{2}$ 6) $3\sqrt{3}$

61. В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1$, все рёбра которой равны 3, найдите $|\overrightarrow{C_1E_1} + 2\overrightarrow{FA} + \overrightarrow{D_1D}|$.

1)
$$\sqrt{2}$$
 2) $2\sqrt{2}$ 3) $3\sqrt{2}$ 4) $\sqrt{18}$ 5) $3\sqrt{3}$ 6) $\sqrt{3}$

62. В кубе $\overrightarrow{ABCDA_1B_1C_1D_1}$ рёбра которого равны 2, вычислите скалярное произведение векторов \overrightarrow{AD} и $\overrightarrow{B_1C_1}$.

1) 2 2)
$$\sqrt{17}$$
 3) 4 4) 4 5) 6 6) $\sqrt{8}$

63. В кубе $ABCDA_1B_1C_1D_1$ рёбра которого равны 2, вычислите скалярное произведение векторов \overrightarrow{AC} и $\overrightarrow{B_1D_1}$.

1) 1 2)
$$\sqrt{2}$$
 3) 4 4) 2 5) 0 6) $\sqrt{3}$

64. В кубе $\overrightarrow{ABCDA_1B_1C_1D_1}$ рёбра которого равны 2, вычислите скалярное произведение векторов \overrightarrow{BD} и $\overrightarrow{A_1C_1}$.

1)
$$\sqrt{6}$$
 2) 0 3) 1 4) 3 5) 2 6) $\sqrt{2}$

65. В кубе $\overrightarrow{ABCDA_1B_1C_1D_1}$ рёбра которого равны 2, вычислите скалярное произведение векторов $\overrightarrow{AB} + \overrightarrow{BC}$ и $\overrightarrow{DD_1} - \overrightarrow{DC}$.

1)
$$-4$$
 2) 3 3) 4 4) 9 5) 1 6) $\sqrt{7}$

66. Найдите координаты вектора \overrightarrow{AB} , если известно, что $A(-3;\ 1;-20);\ C(5;\ 1;-1),$ B — середина отрезка AC.

1)
$$\left(2;\ 0;\ \frac{19}{2}\right)$$
 2) $\left(4;\ 0;\ \frac{19}{4}\right)$ 3) $\left(4;\ 0;\ \frac{19}{2}\right)$ 4) $\left(0;\ 0;\ \frac{19}{6}\right)$ 5) $\left(4;\ 4;\ \frac{19}{2}\right)$ 6) $\left(4;\ 0;\ 19\right)$

- **67.** Найдите координаты вектора \overrightarrow{AB} , если известно, что A(2; -3; -10); C(-5; 2; 3), <math>B середина отрезка AC.
 - 1) $\left(\frac{7}{2}; \frac{5}{2}; -\frac{13}{2}\right)$ 2) $\left(-\frac{7}{2}; \frac{5}{2}; \frac{13}{2}\right)$ 3) $\left(-\frac{7}{4}; \frac{5}{4}; \frac{13}{2}\right)$ 4) $\left(-\frac{7}{2}; -\frac{5}{2}; \frac{13}{4}\right)$ 5) $\left(\frac{7}{2}; -\frac{5}{2}; -\frac{13}{2}\right)$ 6) $\left(-\frac{9}{2}; \frac{5}{2}; \frac{13}{8}\right)$
- **68.** Найдите координаты вектора \overrightarrow{AB} , если известно, что A(-3; 1; -20); C(5; 1; -1), точка B делит отрезок AC в отношении 3:2, считая от A.

1)
$$\left(\frac{6}{5}; 1; -\frac{57}{5}\right)$$
 2) $\left(-\frac{24}{5}; 1; \frac{57}{5}\right)$ 3) $\left(-\frac{4}{5}; 1; -\frac{43}{7}\right)$ 4) $\left(-\frac{6}{5}; 0; -\frac{43}{5}\right)$ 5) $\left(\frac{6}{5}; 1; \frac{57}{5}\right)$ 6) $\left(\frac{24}{5}; 0; \frac{57}{5}\right)$

69. Найдите координаты вектора \overrightarrow{AB} , если известно, что A(1; 2; -2); C(3; 1; -2), точка B делит отрезок AC в отношении 4:3, считая от A.

1)
$$\left(-\frac{8}{7}; -\frac{4}{7}; -4\right)$$
 2) $\left(\frac{12}{7}; \frac{12}{7}; -2\right)$ 3) $\left(-\frac{8}{7}; -\frac{4}{7}; 0\right)$
4) $\left(\frac{15}{7}; -\frac{10}{7}; 2\right)$ 5) $\left(\frac{8}{7}; -\frac{4}{7}; 0\right)$ 6) $\left(\frac{8}{7}; \frac{4}{7}; 4\right)$

- 70. Найдите скалярное произведение векторов \overrightarrow{AB} и \overrightarrow{CD} , если $\overrightarrow{AB}=(2;\ 3;\ 1);$ $\overrightarrow{CD}=(-2;-3;\ 1).$
 - 1) -10 2) -12 3) 15 4) -11 5) -16 6) 12
- 71. Найдите скалярное произведение векторов \overrightarrow{AB} и \overrightarrow{CD} , если $\overrightarrow{AB}=(5;1;-6);$ $\overrightarrow{CD}=(2;-7;-10).$
 - 1) 39 2) 65 3) 63 4) 84 5) 68 6) 90
- 72. Найдите скалярное произведение векторов \overrightarrow{AB} и \overrightarrow{CD} , если $A(1;2;3);\ B(2;3;4);\ C(-2;-3;1);\ D(2;3;1).$
 - 1) 14 2) 8 3) 18 4) 20 5) 10 6) 6
- 73. Найдите скалярное произведение векторов \overrightarrow{AB} и \overrightarrow{CD} , если A(5;12;-3); B(10;-2;14); C(4;-20;7); D(12;8;3).
 - 1) -400 2) -360 3) 420 4) -446 5) -464 6) -420
 - 74. Найдите угол между векторами \overrightarrow{AB} и \overrightarrow{CD} , если $\overrightarrow{AB}=(-3;4;0);$ $\overrightarrow{CD}=(5;0;-12).$
 - 1) $\arcsin\left(-\frac{3}{13}\right)$ 2) $\arccos\left(-\frac{3}{13}\right)$ 3) $\arccos\left(\frac{3}{13}\right)$ 4) $-\arccos\left(\frac{3}{13}\right)$ 5) $\pi + \arccos\left(\frac{3}{13}\right)$ 6) $-\arcsin\left(\frac{3}{13}\right)$

75. Найдите угол между векторами \overrightarrow{AB} и \overrightarrow{CD} , если $\overrightarrow{AB}=(1;2;3); \ \overrightarrow{CD}=(5;0;-12).$

1)
$$-\arccos\frac{20}{\sqrt{406}}$$
 2) $\arccos\left(\frac{13\sqrt{14}}{182}\right)$ 3) $\arccos\left(-\frac{13\sqrt{7}}{182}\right)$ 4) $-\arcsin\frac{20}{\sqrt{406}}$ 5) $\arccos\left(-\frac{13\sqrt{14}}{182}\right)$ 6) $\arccos\left(-\frac{13\sqrt{14}}{91}\right)$

76. Найдите угол между векторами \overrightarrow{AB} и \overrightarrow{CD} , если A(5;1;-6); B(-3;1;-20); C(12;-7;9); <math>D(8;-6;5).

1)
$$-\arccos\frac{44}{\sqrt{2145}}$$
 2) $\arccos\frac{22}{\sqrt{2145}}$ 3) $\arccos\frac{44}{\sqrt{2145}}$ 4) $-\arcsin\frac{44}{\sqrt{2145}}$ 5) $-\arccos\frac{22}{\sqrt{2145}}$ 6) $\arccos\left(-\frac{44}{\sqrt{2145}}\right)$

77. Найдите угол между векторами \overrightarrow{AB} и \overrightarrow{CD} , если A(3;7;4); B(5;-2;34); C(4;-7;-10); D(3;2;1).

1)
$$\arccos\left(\frac{247\sqrt{199955}}{199955}\right)$$
 2) $\arccos\left(-\frac{247\sqrt{199955}}{199955}\right)$
3) $-\arcsin\frac{277}{\sqrt{199\sqrt{55}}}$ 4) $\arccos\left(\frac{330\sqrt{199955}}{199955}\right)$
5) $\arccos\left(\frac{247\sqrt{199955}}{985}\right)$ 6) $\arcsin\left(-\frac{277}{\sqrt{199\sqrt{55}}}\right)$