Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Задания Д10 A10. Задания реальной версии ЕНТ 2021 года на позиции 10
1) 162 см3
2) 182 см3
3) 152 см3
4) 180 см3
5) 175 см3
2.  
i

Hа ри­сун­ке СЕ = 20. Ра­ди­у­сы окруж­но­стей О1В = 5 и О2А = 7. Длина от­рез­ка АВ равна

1) 1,4
2) 2,2
3) 3
4) 4
5) 2
3.  
i

На ри­сун­ке O_1O_2 = 28. Ра­ди­у­сы окруж­но­стей O_1B = 14 и O_2A = 20. Длина от­рез­ка AB равна

1) 6
2) 8
3) 9
4) 7
5) 10
4.  
i

Пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка с ка­те­та­ми 6 и 9 равна?

1) 48
2) 27
3) 54
4) 33
5) 23

Най­ди­те диа­го­наль пря­мо­уголь­ной приз­мы, в ос­но­ва­нии ко­то­рой лежит пря­мо­уголь­ник со сто­ро­на­ми 8 см и 4 ко­рень из 5 см и бо­ко­вое ребро приз­мы 5 см.

1) 15 см
2) 11 см
3) 14 см
4) 13 см
5) 12 см

Най­ди­те объем пра­виль­ной тре­уголь­ной усе­чен­ной пи­ра­ми­ды, вы­со­та ко­то­рой 6 м и сто­ро­ны ос­но­ва­ний 3 м и 4 м.

1)  дробь: чис­ли­тель: 19 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби м3
2)  дробь: чис­ли­тель: 39 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби м3
3) \frca27 ко­рень из 3 2 м3
4)  дробь: чис­ли­тель: 37 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби м3
5)  дробь: чис­ли­тель: 17 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби м3
7.  
i

Най­ди­те об­ра­зу­ю­щую рав­но­сто­рон­не­го ко­ну­са, если пло­щадь осе­во­го се­че­ния равна 16 ко­рень из 3 см2.

(При­ме­ча­ние Решу ЕНТ: ви­ди­мо, рав­но­сто­рон­ним ко­ну­сом со­ста­ви­те­ли за­да­ния на­зы­ва­ют такой, у ко­то­ро­го осе­вое се­че­ние — рав­но­сто­рон­ний тре­уголь­ник.)

1) 6 см
2) 8 см
3) 10 см
4) 12 см
5) 4 см

Пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы равна 108 см2. Диа­го­наль бо­ко­вой грани на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 45°. Най­ди­те объем дан­ной приз­мы.

1) 16 ко­рень из 2 см3
2) 54 см3
3) 48 см3
4) 54 ко­рень из 3 см3
5) 48 ко­рень из 3 см3
1) 216 см3.
2) 24 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
3) 126 см3.
4) 16 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
5) 12 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
10.  
i

Oтре­зок АD пер­пен­ди­ку­ля­рен плос­ко­сти (BCD). Пря­мая ВС — общее ребро плос­ко­стей (ВАС) и (ВDC). Пер­пен­ди­ку­ляр, опу­щен­ный из точки А на ребро ВС равен 2а, а пер­пен­ди­ку­ляр опу­щен­ный из точки D на ребро ВС равен а, тогда угол между плос­ко­стя­ми равен

1) 90°
2) 70°
3) 45°
4) 30°
5) 60°
11.  
i

Най­ди­те объем пра­виль­ной усе­чен­ной че­ты­рех­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 9 см и 25 см, а вы­со­та 18 см.

1) 4308 см3
2) 5586 см3
3) 5896 см3
4) 3888 см3
5) 6489 см3
12.  
i

В шар ра­ди­у­сом 5 м впи­сан ци­линдр с диа­мет­ром ос­но­ва­ния 6 м. Вы­со­та ци­лин­дра равна

1) 10 м
2) 4 м
3) 6 м
4) 8 м
5) 12 м
13.  
i

Ра­ди­ус шара равен 12 см. Най­ди­те ра­ди­ус се­че­ния шара, если плос­кость се­че­ния со­став­ля­ет угол 45° с ра­ди­у­сом, про­ве­ден­ным в точку се­че­ния ле­жа­щую на сфере.

1) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см
2) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см
3) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
4) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см
5) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
14.  
i

Най­ди­те вы­со­ту пи­ра­ми­ды, в ос­но­ва­нии ко­то­рой рав­но­сто­рон­ний тре­уголь­ник со сто­ро­ной 27 см и каж­дое ребро пи­ра­ми­ды об­ра­зу­ет угол 45° с плос­ко­стью ос­но­ва­ния.

1) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
2) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
4) 12 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
5) 9 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
15.  
i

Bысота ко­ну­са равна 30 см, а длина об­ра­зу­ю­щей — 34 см. Най­ди­те диа­метр ко­ну­са.

1) 33 см
2) 30 см
3) 32 см
4) 31 см
5) 34 см
16.  
i

Ра­ди­ус верх­не­го ос­но­ва­ния усечённого ко­ну­са равен 2 м, вы­со­та — 6 м. Най­ди­те ра­ди­ус ниж­не­го ос­но­ва­ния, если его объём равен 38π м3.

1) 4 м
2) 2 м
3) 3 м
4) 1 м
5) 5 м
1) 8 см
2) 6 см
3) 24 см
4) 12 см
5) 16 см
18.  
i

Bо сколь­ко раз уве­ли­чит­ся объем куба, если его ребра уве­ли­чить в 7 раз.

1) в 144 раз
2) в 125 раз
3) в 14 раз
4) в 343 раз
5) в 49 раз
19.  
i

Най­ди­те вы­со­ту пи­ра­ми­ды, каж­дое бо­ко­вое ребро ко­то­рой равно 10 см и в ос­но­ва­нии квад­рат со сто­ро­ной 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см.

1) 8 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см.
2) 8 см
3) 6 см
4) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см.
5) 12 см
20.  
i

При па­рал­лель­ном пе­ре­но­се точке A(−3; 4) пе­ре­хо­дит в точку A′(1; −1), а точка B(2; −3) в точку B′. Най­ди­те ко­ор­ди­на­ты точки B′.

1) B′(6; −8)
2) B′(−3; −4)
3) B′(4; −5)
4) B′(−2; −3)
5) B′(2; 3)
21.  
i

Най­ди­те пло­щадь ромба, если его диа­го­на­ли от­но­сят­ся как 3 : 4, а бо­ко­вая сто­ро­на равна 10.

1) 192
2) 320
3) 100
4) 96
5) 150