Заголовок: ЕНТ по математике 2021 года. Вариант 3
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 38

ЕНТ по математике 2021 года. Вариант 3

1.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .

1) 1
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4) −2
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2.  
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та =2.

1) 2
2) 0
3) 3
4) 1
5) 4
1) (1; 5)
2) (0; −7)
3) (4; 3)
4) (3; 4)
5) (1; 3)
4.  
i

Ав­то­бус и гру­зо­вая ма­ши­на, ско­рость ко­то­рой на 19 км/ч боль­ше ско­ро­сти ав­то­бу­са, вы­еха­ли од­но­вре­мен­но нав­стре­чу друг другу из двух го­ро­дов, рас­сто­я­ние между ко­то­ры­ми 218 км. Най­ди­те ско­рость гру­зо­вой ма­ши­ны, если из­вест­но, что они встре­ти­лись через 2 часа после вы­ез­да.

1) 54 км/ч
2) 45 км/ч
3) 65 км/ч
4) 64 км/ч
5) 60 км/ч
5.  
i

Най­ди­те об­ласть опре­де­ле­ния функ­ции y = ко­рень из: на­ча­ло ар­гу­мен­та: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка .

1)  левая круг­лая скоб­ка минус 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус 2; 1 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус 2; минус 1 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка
5)  левая квад­рат­ная скоб­ка минус 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
6.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 5 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 2x пра­вая круг­лая скоб­ка мень­ше или равно 125, левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 7 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2x в квад­ра­те минус 3x пра­вая круг­лая скоб­ка боль­ше или равно дробь: чис­ли­тель: 1, зна­ме­на­тель: 49 конец дроби . конец си­сте­мы .

1) (−1; 3]
2)  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ;2 пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ;2 пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 3 пра­вая круг­лая скоб­ка
5) (−1; 2)
7.  
i

Между чис­ла­ми А = 6 и B= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби вставь­те по­ло­жи­тель­ное число С так, чтобы по­лу­чи­лось три по­сле­до­ва­тель­ных члена А, С и В гео­мет­ри­че­ской про­грес­сии. Число С равно

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4) 3
5)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
8.  
i

Ука­жи­те общий вид пер­во­об­раз­ной для функ­ции: f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 в сте­пе­ни x .

1) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 2 конец дроби плюс C
2) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм x плюс C
3) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс C
4) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , зна­ме­на­тель: e конец дроби плюс C
5) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 2 конец дроби плюс C

К окруж­но­сти про­ве­де­на се­ку­щая CA, CB = AB = 8. Длина ка­са­тель­ной СЕ равна

1) 8 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2) 12
3) 8 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
5) 16
10.  
i

В шар ра­ди­у­сом 5 м впи­сан ци­линдр с диа­мет­ром ос­но­ва­ния 6 м. Вы­со­та ци­лин­дра равна

1) 10 м
2) 4 м
3) 6 м
4) 8 м
5) 12 м
11.  
i

Сумма чле­нов бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии в 3 раза боль­ше ее пер­во­го члена. Най­ди­те от­но­ше­ние  дробь: чис­ли­тель: b_7, зна­ме­на­тель: b_5 конец дроби .

1)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 4 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 9 конец дроби
4)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби
5)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
12.  
i

Вы­чис­ли­те 0,(53) + 1,(2).

1)  целая часть: 1, дроб­ная часть: чис­ли­тель: 20, зна­ме­на­тель: 33
2)  целая часть: 1, дроб­ная часть: чис­ли­тель: 25, зна­ме­на­тель: 33
3)  целая часть: 1, дроб­ная часть: чис­ли­тель: 25, зна­ме­на­тель: 30
4)  целая часть: 2, дроб­ная часть: чис­ли­тель: 25, зна­ме­на­тель: 33
5)  дробь: чис­ли­тель: 25, зна­ме­на­тель: 33 конец дроби
13.  
i

Най­ди­те целые по­ло­жи­тель­ные ре­ше­ния си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний 1 минус 0,5x мень­ше 4 плюс x,9 минус 2,8x боль­ше или равно 6 минус 1,3x. конец си­сте­мы .

1) 0; 1; 2
2) 1; 2; 3; 4
3) 0; 1; 2; 3
4) 1; 2
5) 1; 2; 3
14.  
i

Ука­жи­те общий вид пер­во­об­раз­ной для функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 3 конец ар­гу­мен­та конец дроби при x при­над­ле­жит левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка .

1) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 x минус 3 конец ар­гу­мен­та плюс C
2) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 x минус 3 конец ар­гу­мен­та плюс C
3) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: 2 x минус 3 конец ар­гу­мен­та плюс C
4) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 2 x минус 3 конец ар­гу­мен­та плюс C
5) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 x минус 3 конец ар­гу­мен­та плюс C
15.  
i

Най­ди­те угол В тре­уголь­ни­ка АВС, если А(1; 1), В(4; 1) и С(4; 5).

1) 90°
2) 60°
3) 135°
4) 120°
5) 30°
16.  
i

В не­ко­то­ром го­ро­де 484 000 жи­те­лей. Из­вест­но, что каж­дый год ко­ли­че­ство жи­те­лей уве­ли­чи­ва­лось на 10%. Число жи­те­лей 2 года назад со­став­ля­ло?

1) 385 600
2) 400 000
3) 350 000
4) 300 000
5) 387 200
17.  
i

Тан­генс мень­ше­го угла тре­уголь­ни­ка со сто­ро­на­ми 10 см, 17 см, 21 см, равен?

1) 1,4
2)  дробь: чис­ли­тель: 8, зна­ме­на­тель: 15 конец дроби
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 8 конец дроби
5) 0,8
18.  
i

Чис­ли­те­ли двух дро­бей про­пор­ци­о­наль­ны чис­лам 2 и 7, а зна­ме­на­те­ли этих дро­бей со­от­вет­ствен­но про­пор­ци­о­наль­ны чис­лам 3 и 8. Сред­нее ариф­ме­ти­че­ское этих дро­бей равно  дробь: чис­ли­тель: 37, зна­ме­на­тель: 144 конец дроби . Най­ди­те эти дроби.

1)  дробь: чис­ли­тель: 8, зна­ме­на­тель: 15 конец дроби и  дробь: чис­ли­тель: 28, зна­ме­на­тель: 40 конец дроби
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 9 конец дроби и  дробь: чис­ли­тель: 7, зна­ме­на­тель: 24 конец дроби
3)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 15 конец дроби и  дробь: чис­ли­тель: 14, зна­ме­на­тель: 40 конец дроби
4)  дробь: чис­ли­тель: 6, зна­ме­на­тель: 12 конец дроби и  дробь: чис­ли­тель: 21, зна­ме­на­тель: 32 конец дроби
5)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 12 конец дроби и  дробь: чис­ли­тель: 7, зна­ме­на­тель: 32 конец дроби
19.  
i

Най­ди­те целые ре­ше­ния. удо­вле­тво­ря­ю­щие об­ла­сти опре­де­ле­ния функ­ции: y = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 4x плюс 3 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 4 минус x в квад­ра­те конец ар­гу­мен­та конец дроби .

1) 0; 1; 2
2) −1; 0; 1
3) −2; −1; 1
4) −1; 1; 2
5) −2; −1; 0
1) 32 см
2) 26 см
3) 30 см
4) 27 см
5) 25 см
21.  
i

Aлия и Арман ре­ши­ли обла­го­ро­дить свою дачу. Длина всего участ­ка 27 м, а его пло­щадь 405 м2. Вы­со­та дач­но­го до­ми­ка без крыши равна 2,5 м, ши­ри­на в 2 раза боль­ше вы­со­ты, а длина ос­но­ва­ния дач­но­го до­ми­ка на 11 м боль­ше его ши­ри­ны. Во­круг до­ми­ка за­ас­фаль­ти­ро­ва­ли до­рож­ку.

Най­ди­те пе­ри­метр ос­но­ва­ния дач­но­го до­ми­ка.

1) 24 м
2) 32 м
3) 21 м
4) 40 м
5) 42 м
22.  
i

Aлия и Арман ре­ши­ли обла­го­ро­дить свою дачу. Длина всего участ­ка 27 м, а его пло­щадь 405 м2. Вы­со­та дач­но­го до­ми­ка без крыши равна 2,5 м, ши­ри­на в 2 раза боль­ше вы­со­ты, а длина ос­но­ва­ния дач­но­го до­ми­ка на 11 м боль­ше его ши­ри­ны. Во­круг до­ми­ка за­ас­фаль­ти­ро­ва­ли до­рож­ку.

Aлия и Арман ре­ши­ли ого­ро­дить уча­сток за­бо­ром с во­ро­та­ми дли­ной 2 метра. Най­ди­те длину за­бо­ра (без учета ворот).

1) 405 м
2) 40 м
3) 82 м
4) 42 м
5) 84 м
23.  
i

Aлия и Арман ре­ши­ли обла­го­ро­дить свою дачу. Длина всего участ­ка 27 м, а его пло­щадь 405 м2. Вы­со­та дач­но­го до­ми­ка без крыши равна 2,5 м, ши­ри­на в 2 раза боль­ше вы­со­ты, а длина ос­но­ва­ния дач­но­го до­ми­ка на 11 м боль­ше его ши­ри­ны. Во­круг до­ми­ка за­ас­фаль­ти­ро­ва­ли до­рож­ку.

Hай­ди­те объем дач­но­го до­ми­ка (без учета крыши дома).

1) 105 м3
2) 100 м3
3) 400 м3
4) 200 м3
5) 250 м3
24.  
i

Aлия и Арман ре­ши­ли обла­го­ро­дить свою дачу. Длина всего участ­ка 27 м, а его пло­щадь 405 м2. Вы­со­та дач­но­го до­ми­ка без крыши равна 2,5 м, ши­ри­на в 2 раза боль­ше вы­со­ты, а длина ос­но­ва­ния дач­но­го до­ми­ка на 11 м боль­ше его ши­ри­ны. Во­круг до­ми­ка за­ас­фаль­ти­ро­ва­ли до­рож­ку.

Eсли уве­ли­чить ши­ри­ну ос­но­ва­ния дач­но­го до­ми­ка на 3 м, а его длину на 4 м, то во сколь­ко раз уве­ли­чит­ся пло­щадь ос­но­ва­ния дач­но­го до­ми­ка.

1) в 1,5 раза
2) в 0,5 раза
3) в 2 раза
4) в 4 раза
5) в 3 раза
25.  
i

Aлия и Арман ре­ши­ли обла­го­ро­дить свою дачу. Длина всего участ­ка 27 м, а его пло­щадь 405 м2. Вы­со­та дач­но­го до­ми­ка без крыши равна 2,5 м, ши­ри­на в 2 раза боль­ше вы­со­ты, а длина ос­но­ва­ния дач­но­го до­ми­ка на 11 м боль­ше его ши­ри­ны. Во­круг до­ми­ка за­ас­фаль­ти­ро­ва­ли до­рож­ку.

Пло­щадь за­ас­фаль­ти­ро­ван­ной до­рож­ки вме­сте с ос­но­ва­ни­ем дач­но­го до­ми­ка равна 126 м2. Из­вест­но, что ши­ри­на до­рож­ки везде одна и та же. Най­ди­те ши­ри­ну до­рож­ки.

1) 120 см
2) 50 см
3) 100 см
4) 80 см
5) 60 см
26.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та , зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 125 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та конец дроби .

1) 2 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2) 1,5
3) −1,5
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 6 конец дроби
5)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) 1,2
7)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
8) 5 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
27.  
i

Ука­жи­те вы­ра­же­ния, зна­че­ния ко­то­рых равны корню урав­не­ния:  дробь: чис­ли­тель: 7 левая круг­лая скоб­ка a минус 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 конец дроби = дробь: чис­ли­тель: 5 левая круг­лая скоб­ка a плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби минус 3 левая круг­лая скоб­ка a плюс 2 пра­вая круг­лая скоб­ка .

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2) −2
3) 4
4)  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 16 конец ар­гу­мен­та
5)  минус ко­рень из: на­ча­ло ар­гу­мен­та: 16 конец ар­гу­мен­та
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та
7)  левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
8)  ко­рень из: на­ча­ло ар­гу­мен­та: 4 конец ар­гу­мен­та
28.  
i

Ка­ко­му про­ме­жут­ку при­над­ле­жит от­но­ше­ние  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: 2x плюс 3 конец ар­гу­мен­та плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: y плюс 3 конец ар­гу­мен­та = 7,5 ко­рень из: на­ча­ло ар­гу­мен­та: 2x плюс 3 конец ар­гу­мен­та минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: y плюс 3 конец ар­гу­мен­та = 1. конец си­сте­мы .

1) (−3; 3)
2) (4; 7)
3) (2; 7)
4) (0; 3)
5) [−3; 5]
6) [−1; 1]
7) [2; 5]
8) [3; 5]
29.  
i

Сумма двух по­сле­до­ва­тель­ных на­ту­раль­ных чисел, за­дан­ных вида 3n, равна 21, а их про­из­ве­де­ние 108. Ука­жи­те дан­ные числа.

1) 10
2) 7
3) 11
4) 9
5) 13
6) 8
7) 12
8) 14
30.  
i

Из пред­ло­жен­ных ниже про­ме­жут­ков, ука­жи­те про­ме­жут­ки удо­вле­тво­ря­ю­щие ре­ше­нию не­ра­вен­ства  левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2x плюс 5 пра­вая круг­лая скоб­ка боль­ше или равно 0.

1)  левая квад­рат­ная скоб­ка 3 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка минус 2 ; 3 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка минус 2,5 ; минус 2 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2,5 пра­вая квад­рат­ная скоб­ка
5)  левая круг­лая скоб­ка минус 2 ; 3 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2,5 пра­вая круг­лая скоб­ка
7)  левая квад­рат­ная скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 9 конец ар­гу­мен­та ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
8)  левая круг­лая скоб­ка минус 3 ; минус 2 пра­вая круг­лая скоб­ка
31.  
i

Из ни­же­пе­ре­чис­лен­ных пар чисел, вы­бе­ри­те те, ко­то­рые яв­ля­ют­ся ре­ше­ни­ем си­сте­мы урав­не­ний:

 си­сте­ма вы­ра­же­ний синус x плюс ко­си­нус y=1, синус x умно­жить на ко­си­нус y= дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби . конец си­сте­мы .

1)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка пра­вая фи­гур­ная скоб­ка
2)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка пра­вая фи­гур­ная скоб­ка
3)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка пра­вая фи­гур­ная скоб­ка
4)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка пра­вая фи­гур­ная скоб­ка
5)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка пра­вая фи­гур­ная скоб­ка
6)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка пра­вая фи­гур­ная скоб­ка
7)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка пра­вая фи­гур­ная скоб­ка
8)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка пра­вая фи­гур­ная скоб­ка
32.  
i

Най­ди­те ин­тер­вал, ко­то­ро­му при­над­ле­жит зна­че­ние ин­те­гра­ла  S = ин­те­грал пре­де­лы: от минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби до дробь: чис­ли­тель: Пи , 4, зна­ме­на­тель: ко­си­нус x синус x d x конец дроби .

1)  левая квад­рат­ная скоб­ка минус 1 ; минус 0,5 пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка минус 1 ; минус 0,25 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус 0,5 ; 0,5 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка минус 1 ; 0 пра­вая квад­рат­ная скоб­ка
5)  левая круг­лая скоб­ка 0,5;1 пра­вая круг­лая скоб­ка
6)  левая фи­гур­ная скоб­ка 1;1,5 пра­вая круг­лая скоб­ка
7)  левая круг­лая скоб­ка 0,5 ; 1,25 пра­вая квад­рат­ная скоб­ка
8)  левая квад­рат­ная скоб­ка 0 ; 1,5 пра­вая круг­лая скоб­ка
33.  
i

Одна из диа­го­на­лей па­рал­ле­ло­грам­ма пер­пен­ди­ку­ляр­на сто­ро­не. Най­ди­те эту диа­го­наль и пло­щадь па­рал­ле­ло­грам­ма, если его пе­ри­метр равен 16 см, а раз­ность смеж­ных сто­рон равна 2 см.

1) 36 см2
2) 80 см2
3) 13 см
4) 5 см
5) 4 см
6) 12 см
7) 12 см2
8) 6 см2
34.  
i

Най­ди­те про­из­вод­ную функ­ции:  y = на­ту­раль­ный ло­га­рифм левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 4 плюс 3 x конец ар­гу­мен­та пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 левая круг­лая скоб­ка 4 минус 3 x пра­вая круг­лая скоб­ка конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 минус x конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 минус 6 x конец дроби
4)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 4 левая круг­лая скоб­ка 4 минус 3 x пра­вая круг­лая скоб­ка конец дроби
5)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 левая круг­лая скоб­ка 4 плюс 3 x пра­вая круг­лая скоб­ка конец дроби
6)  дробь: чис­ли­тель: 1, зна­ме­на­тель: левая круг­лая скоб­ка 4 плюс 3 x пра­вая круг­лая скоб­ка конец дроби
7)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 16 минус 3 x конец дроби
8)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 8 плюс 6 x конец дроби
35.  
i

Через вер­ши­ну остро­го угла пря­мо­уголь­но­го тре­уголь­ни­ка ABC с пря­мым углом C про­ве­де­на пря­мая AD, пер­пен­ди­ку­ляр­ная плос­ко­сти тре­уголь­ни­ка. Най­ди­те рас­сто­я­ние от точки D до вер­ши­ны B, если AC = 8, BC = 9 и AD = 10.

1) 7 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 145 конец ар­гу­мен­та
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 245 конец ар­гу­мен­та
4) 132
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 125 конец ар­гу­мен­та
6) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
7) 175
8) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та