Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 11801
1.  
i

Hай­ди­те 15% от числа 78.

1) 11,7
2) 1170
3) 19,5
4) 117
2.  
i

Вы­пол­ни­те дей­ствия, за­пи­ши­те число в ал­геб­ра­и­че­ской форме:  левая круг­лая скоб­ка 3 минус 2i пра­вая круг­лая скоб­ка плюс 2 левая круг­лая скоб­ка 5 плюс i пра­вая круг­лая скоб­ка минус 14.

1) z= минус 1 плюс 2i
2) z=1
3) z=1 минус i
4) z= минус 1
3.  
i

Вы­пол­ни­те дей­ствия: 0,45:0,09 плюс 36:1,2 минус 18,63.

1) 14,37
2) 16,37
3) 8,37
4) 25,37
4.  
i

Най­ди­те зна­че­ние вы­ра­же­ния: \ctg левая круг­лая скоб­ка арк­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка .

1) 1
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
5.  
i

Зна­че­ние вы­ра­же­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: x плюс y конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка при x плюс y=2,25 равно

1) 3,5
2) −0,5
3) −1,5
4) 0,75
6.  
i

Ре­ши­те не­ра­вен­ство:  ко­си­нус x мень­ше или равно 1.

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи n ; Пи плюс 2 Пи n пра­вая круг­лая скоб­ка ,n при­над­ле­жит Z
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи n ; Пи плюс 2 Пи n пра­вая квад­рат­ная скоб­ка ,n при­над­ле­жит Z
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи n ; Пи плюс 2 Пи n пра­вая круг­лая скоб­ка ,n при­над­ле­жит Z
7.  
i

Если пары (x1; y1) и (x2; y2) — ре­ше­ния си­сте­мы урав­не­ний

 си­сте­ма вы­ра­же­ний 2 x в квад­ра­те минус y=0, y плюс 3=5 x, конец си­сте­мы .

то най­ди­те m, где m= левая круг­лая скоб­ка y_1 минус x_1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка y_2 минус x_2 пра­вая круг­лая скоб­ка .

1) 4
2) 15
3) 17
4) 3
8.  
i

Вы­чис­ли­те пре­дел \undersetx\to минус бес­ко­неч­ность \mathop\lim левая круг­лая скоб­ка минус x в кубе плюс 2x минус 1 пра­вая круг­лая скоб­ка .

1)  минус бес­ко­неч­ность
2) 1
3) 0
4)  бес­ко­неч­ность
9.  
i

Ка­те­ты пря­мо­уголь­но­го тре­уголь­ни­ка равны 10 и 24. Вы­со­та, про­ведённая к ги­по­те­ну­зе, равна

1)  целая часть: 9, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 13
2) 14
4)  целая часть: 6, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 13
6)  целая часть: 6, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 11
10.  
i

Най­ди­те вы­со­ту пи­ра­ми­ды, каж­дое бо­ко­вое ребро ко­то­рой равно 10 см и в ос­но­ва­нии квад­рат со сто­ро­ной 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см.

1) 8 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см.
2) 8 см
3) 6 см
4) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см.
11.  
i

Ре­ши­те урав­не­ние  синус в квад­ра­те x минус 17 синус x плюс 16 = 0 и най­ди­те его корни на x при­над­ле­жит левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
2)  минус Пи
3)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
12.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний x левая круг­лая скоб­ка 2x минус 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка боль­ше или равно 0,x в квад­ра­те минус 3x мень­ше 0. конец си­сте­мы .

1) (2; 3)
2) [2; 3)
3) [0; 3]
4) (2; 3]
13.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=3x в квад­ра­те минус 3x плюс 3,y=9x минус 2,x = 0,5,x = 1.

1)  дробь: чис­ли­тель: 28 ко­рень из: на­ча­ло ар­гу­мен­та: 21 конец ар­гу­мен­та , зна­ме­на­тель: 11 конец дроби
2)  минус дробь: чис­ли­тель: 9, зна­ме­на­тель: 8 конец дроби
3)  дробь: чис­ли­тель: 28 ко­рень из: на­ча­ло ар­гу­мен­та: 23 конец ар­гу­мен­та , зна­ме­на­тель: 9 конец дроби
4)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 8 конец дроби
14.  
i

В ту­ри­сти­че­ском слёте участ­ву­ют 100 ко­манд, каж­дой из ко­то­рых ор­га­ни­за­то­ры пред­по­ла­га­ют по­шить свой, от­лич­ный от дру­гих, флаг. Сколь­ко от­ре­зов раз­но­цвет­ных тка­ней тре­бу­ет­ся при­об­ре­сти, если флаги долж­ны со­сто­ять из трех го­ри­зон­таль­ных полос оди­на­ко­вой ши­ри­ны, все цвета ко­то­рых раз­лич­ны?

1) 5
2) 3
3) 7
4) 6
15.  
i

Даны ка­са­ю­щи­е­ся окруж­но­сти с цен­тра­ми O1 и O2, DF — общая ка­са­тель­ная; DC=16, FO_1=6, DA=2. Ра­ди­ус вто­рой окруж­но­сти равен

1) 12
2) 9
3) 10
4) 15
16.  
i

Имеем A (2; 10) и В (8; 9) вер­ши­ны мень­ше­го ос­но­ва­ния тра­пе­ции. Точка пе­ре­се­че­ния диа­го­на­лей О (4; 8) делит каж­дую диа­го­наль в от­но­ше­нии 1 : 3. Най­ди­те ко­ор­ди­на­ты точки се­ре­ди­ны ниж­не­го ос­но­ва­ния тра­пе­ции.

1) (4; 5)
2) (4,5; 3)
3) (1; 3,5)
4) (3; 5)
17.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния 6 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка плюс 108=2 в сте­пе­ни левая круг­лая скоб­ка 2 минус x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 12 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка .

1) −6
2) −2
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) 6
18.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: 6x плюс 12 конец ар­гу­мен­та мень­ше 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , ко­рень из: на­ча­ло ар­гу­мен­та: минус 3x плюс 5 конец ар­гу­мен­та боль­ше или равно 5. конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус целая часть: 6, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3 пра­вая квад­рат­ная скоб­ка
3) \varnothing
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; целая часть: 1, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3 пра­вая круг­лая скоб­ка
19.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =5x левая круг­лая скоб­ка x в квад­ра­те плюс 4 пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 2;3 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 10x в квад­ра­те минус 57
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 10x в квад­ра­те
3)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби x в кубе плюс 10x в квад­ра­те минус 57
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 10x
20.  
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 15 Пи . Най­ди­те объем V ци­лин­дра, если из­вест­но, что ра­ди­ус его ос­но­ва­ния боль­ше вы­со­ты на 3,5. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 6 умно­жить на V, зна­ме­на­тель: Пи конец дроби .

1) 225
2) 196
3) 250
4) 200
21.  
i

Бро­са­ют од­но­вре­мен­но два иг­раль­ных ку­би­ка, на гра­нях ко­то­рых рас­по­ло­же­ны числа от 1 до 6.

Ко­ли­че­ство спо­со­бов вы­па­де­ния чет­но­го числа равна

1) 3
2) 9
3) 6
4) 4
22.  
i

Бро­са­ют од­но­вре­мен­но два иг­раль­ных ку­би­ка, на гра­нях ко­то­рых рас­по­ло­же­ны числа от 1 до 6.

Ко­ли­че­ство спо­со­бов вы­па­де­ния не­чет­но­го числа равна

1) 3
2) 2
3) 6
4) 9
23.  
i

Бро­са­ют од­но­вре­мен­но два иг­раль­ных ку­би­ка, на гра­нях ко­то­рых рас­по­ло­же­ны числа от 1 до 6.

Сколь­ки­ми спо­со­ба­ми может вы­пасть в сумме число 5?

1) 3
2) 6
3) 9
4) 4
24.  
i

Бро­са­ют од­но­вре­мен­но два иг­раль­ных ку­би­ка, на гра­нях ко­то­рых рас­по­ло­же­ны числа от 1 до 6.

Сколь­ки­ми спо­со­ба­ми может вы­пасть в сумме чет­ное число?

1) 10
2) 16
3) 18
4) 14
25.  
i

Бро­са­ют од­но­вре­мен­но два иг­раль­ных ку­би­ка, на гра­нях ко­то­рых рас­по­ло­же­ны числа от 1 до 6.

Ка­ко­ва ве­ро­ят­ность того, что сумма чисел на двух иг­раль­ных ку­би­ках будет чет­ным чис­лом.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби
26.  
i

Зна­че­ние вы­ра­же­ния  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 4 левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 3 пра­вая круг­лая скоб­ка в сте­пе­ни 4 конец ар­гу­мен­та равно:

1) 2 минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
2) 3 минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 2
4) 6 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
5) 12 минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
6) 3 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
27.  
i

Ре­ши­те од­но­род­ное урав­не­ние пер­вой сте­пе­ни 2 синус дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби плюс 3 ко­си­нус дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби =0 .

1)  минус арк­тан­генс дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби плюс 2 Пи k
2)  арк­тан­генс дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби плюс 2 Пи k
3) 2 арк­тан­генс дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби плюс 2 Пи k
4)  минус 2 арк­тан­генс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби плюс 2 Пи k
5)  минус 2 арк­тан­генс дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби плюс 2 Пи k
6)  минус 2 арк­тан­генс дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби плюс Пи k
28.  
i

Ука­жи­те вер­ные ра­вен­ства.

1)  левая круг­лая скоб­ка минус a пра­вая круг­лая скоб­ка в сте­пе­ни 5 = левая круг­лая скоб­ка минус a пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка минус a пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка минус a пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка минус a пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка минус a пра­вая круг­лая скоб­ка
2) 2x в сте­пе­ни 4 = 2 умно­жить на x умно­жить на x умно­жить на x умно­жить на x
3)  левая круг­лая скоб­ка ay пра­вая круг­лая скоб­ка в сте­пе­ни 4 = a умно­жить на a умно­жить на a умно­жить на a умно­жить на a умно­жить на y умно­жить на y умно­жить на y умно­жить на y
4) n в сте­пе­ни 5 = n умно­жить на n умно­жить на n умно­жить на n умно­жить на n
5)  левая круг­лая скоб­ка my пра­вая круг­лая скоб­ка в кубе = m умно­жить на y умно­жить на y умно­жить на y
6) m в кубе = m плюс m плюс m
29.  
i

Най­ди­те про­из­вод­ную функ­ции: y = де­ся­тич­ный ло­га­рифм дробь: чис­ли­тель: 15 минус x, зна­ме­на­тель: x плюс 6 конец дроби .

1)  дробь: чис­ли­тель: 21, зна­ме­на­тель: левая круг­лая скоб­ка x в квад­ра­те плюс 9 x минус 90 пра­вая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 10 конец дроби
2)  дробь: чис­ли­тель: 10, зна­ме­на­тель: левая круг­лая скоб­ка x плюс 6 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 15 пра­вая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 21 конец дроби
3)  дробь: чис­ли­тель: 21, зна­ме­на­тель: левая круг­лая скоб­ка x в квад­ра­те минус 9 x плюс 90 пра­вая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 10 конец дроби
4)  дробь: чис­ли­тель: 21, зна­ме­на­тель: левая круг­лая скоб­ка x плюс 6 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 15 пра­вая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 10 конец дроби
5)  дробь: чис­ли­тель: 21, зна­ме­на­тель: левая круг­лая скоб­ка x плюс 15 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 10 конец дроби
6)  дробь: чис­ли­тель: 21, зна­ме­на­тель: левая круг­лая скоб­ка x в квад­ра­те минус 9 x минус 90 пра­вая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 10 конец дроби
30.  
i

На ри­сун­ке изоб­ра­жен ромб ABCD. Най­ди­те длины век­то­ров: \overrightarrowAB плюс \overrightarrowAD, \overrightarrowAB минус \overrightarrowAD, \overrightarrowAB минус \overrightarrowAC, если DB  =  12, AC  =  16.

1) 16, 10, 12
2) 14, 12, 6
3) 11, 16, 10
4) 12, 16, 8
5) 6, 16, 10
6) 16, 12, 10
31.  
i

Вы­чис­ли­те  дробь: чис­ли­тель: 2 плюс 3i, зна­ме­на­тель: 5 минус 2i конец дроби минус дробь: чис­ли­тель: 3i, зна­ме­на­тель: 5 плюс 2i конец дроби .

1)  минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 29 конец дроби плюс дробь: чис­ли­тель: 4i, зна­ме­на­тель: 29 конец дроби .
2)  минус дробь: чис­ли­тель: 4, зна­ме­на­тель: 58 конец дроби плюс дробь: чис­ли­тель: 4i, зна­ме­на­тель: 29 конец дроби .
3)  минус дробь: чис­ли­тель: 4, зна­ме­на­тель: 58 конец дроби плюс дробь: чис­ли­тель: 8i, зна­ме­на­тель: 29 конец дроби .
4)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 29 конец дроби плюс дробь: чис­ли­тель: 4i, зна­ме­на­тель: 58 конец дроби .
5)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 29 конец дроби плюс дробь: чис­ли­тель: 4i, зна­ме­на­тель: 34 конец дроби .
6)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 29 конец дроби минус дробь: чис­ли­тель: 4i, зна­ме­на­тель: 29 конец дроби .
32.  
i

Дана си­сте­ма урав­не­ний

 си­сте­ма вы­ра­же­ний 2 в сте­пе­ни x умно­жить на 4 в сте­пе­ни y = 32, ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 3 2, конец си­сте­мы .

где (x; y) — ре­ше­ние дан­ной си­сте­мы урав­не­ний. Сумма (x + y) при­над­ле­жит про­ме­жут­ку?

1) (0; 8)
2) (10; 24)
3) (5; 12)
4) (−1; 6)
5) (5; 7)
6) (0; 10)
33.  
i

Най­ди­те пе­ри­метр и пло­щадь ромба, если его диа­го­на­ли равны 5 см и 1,2 дм.

1) 26 см
2) 80 см2
3) 36 см2
4) 3 см
5) 16 см2
6) 30 см2
34.  
i

Hай­ди­те S, где S — сумма бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии:  дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби 81; ...

1) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
2) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 16 конец дроби
3) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби
4) S = дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби
35.  
i

Ос­но­ва­ни­ем пря­мой приз­мы слу­жит рав­но­бед­рен­ная тра­пе­ция ABCD со сто­ро­на­ми AB = CD = 13 см, BC = 11 см, AD = 21 см. Пло­щадь ее диа­го­наль­но­го се­че­ния равна 180 см2. Най­ди­те пло­щадь пол­ной по­верх­но­сти приз­мы.

1) 522 см2
2) 256 см2
3) 906 см2
4) 1528 см2
5) 1728 см2
6) 129 см2