Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЕНТ — математика
Вариант № 14876
1.  
i

Вы­чис­ли­те: 7 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 9 минус ло­га­рифм по ос­но­ва­нию 2 18 пра­вая круг­лая скоб­ка .

1) 1
2) 7
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 7 конец дроби
2.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 28ab плюс левая круг­лая скоб­ка 2a минус 7b пра­вая круг­лая скоб­ка в квад­ра­те при a= ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та ,b= ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та .

1) 60
2) 392
3) 388
4) 452
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 59 тан­генс 56 гра­ду­сов умно­жить на тан­генс 34 гра­ду­сов .

1) 59
2) −59
3) 118
4) −118
4.  
i

Ука­жи­те вер­ное раз­ло­же­ние на мно­жи­те­ли мно­го­чле­на a в квад­ра­те плюс 4ab плюс 3b в квад­ра­те .

1)  левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс 2b пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка a плюс 3b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 3a плюс b пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка a плюс 3b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 3a плюс b пра­вая круг­лая скоб­ка
5.  
i

Чис­ли­тель дроби на 4 мень­ше ее зна­ме­на­те­ля. Если эту дробь сло­жить с об­рат­ной ей дро­бью, то по­лу­чит­ся число  дробь: чис­ли­тель: 106, зна­ме­на­тель: 45 конец дроби . Най­ди­те ис­ход­ную дробь.

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби
2)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 13 конец дроби
3)  дробь: чис­ли­тель: 11, зна­ме­на­тель: 15 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 9 конец дроби
6.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 5x минус 2y = 15, минус 2x плюс y = минус 7. конец си­сте­мы .

1) (3; 0)
2) (0; −7,5)
3) (1; 3)
4) (1; −5)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус 2x в кубе минус x плюс 3, зна­ме­на­тель: x в квад­ра­те минус 1 конец дроби dx.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби левая круг­лая скоб­ка 2x левая круг­лая скоб­ка x в квад­ра­те плюс 3x плюс 3 пра­вая круг­лая скоб­ка плюс 3 на­ту­раль­ный ло­га­рифм левая круг­лая скоб­ка 1 минус x пра­вая круг­лая скоб­ка минус 21 на­ту­раль­ный ло­га­рифм левая круг­лая скоб­ка 1 плюс x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка плюс C
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби левая круг­лая скоб­ка 2x левая круг­лая скоб­ка x в квад­ра­те минус 3x плюс 3 пра­вая круг­лая скоб­ка плюс 3 на­ту­раль­ный ло­га­рифм левая круг­лая скоб­ка 1 минус x пра­вая круг­лая скоб­ка минус 18 на­ту­раль­ный ло­га­рифм левая круг­лая скоб­ка 1 плюс x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка плюс C
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби левая круг­лая скоб­ка 2x левая круг­лая скоб­ка x в квад­ра­те плюс 3x минус 3 пра­вая круг­лая скоб­ка плюс 3 на­ту­раль­ный ло­га­рифм левая круг­лая скоб­ка 1 минус x пра­вая круг­лая скоб­ка минус 21 на­ту­раль­ный ло­га­рифм левая круг­лая скоб­ка 1 плюс x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка плюс C
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби левая круг­лая скоб­ка 2x левая круг­лая скоб­ка x в квад­ра­те минус 3x плюс 3 пра­вая круг­лая скоб­ка плюс 3 на­ту­раль­ный ло­га­рифм левая круг­лая скоб­ка 1 минус x пра­вая круг­лая скоб­ка минус 21 на­ту­раль­ный ло­га­рифм левая круг­лая скоб­ка 1 плюс x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка плюс C
8.  
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 15 Пи . Най­ди­те объем V ци­лин­дра, если из­вест­но, что ра­ди­ус его ос­но­ва­ния боль­ше вы­со­ты на 3,5. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 6 умно­жить на V, зна­ме­на­тель: Пи конец дроби .

1) 225
2) 196
3) 250
4) 200
9.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний x левая круг­лая скоб­ка 2x минус 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка боль­ше или равно 0,x в квад­ра­те минус 3x мень­ше 0. конец си­сте­мы .

1) (2; 3)
2) [2; 3)
3) [0; 3]
4) (2; 3]
10.  
i

Ре­ши­те урав­не­ние  ко­си­нус левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1)  \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби Пи k,k при­над­ле­жит Z
2)  левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка в сте­пе­ни k Пи плюс 3 Пи k,k при­над­ле­жит Z
3)  \pm Пи плюс 6 Пи k,k при­над­ле­жит Z
4)  левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка в сте­пе­ни k дробь: чис­ли­тель: Пи , зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби Пи k,k при­над­ле­жит Z
11.  
i

Из ниже пе­ре­чис­лен­ных от­ве­тов, ука­жи­те одну из пер­во­об­раз­ных для функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 4, зна­ме­на­тель: x конец дроби , при x боль­ше 0.

1) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =4 на­ту­раль­ный ло­га­рифм x
2) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = минус 4 на­ту­раль­ный ло­га­рифм x
3) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби на­ту­раль­ный ло­га­рифм x
4) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби на­ту­раль­ный ло­га­рифм x
12.  
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 3x плюс 9, зна­ме­на­тель: 3 минус x конец дроби боль­ше или равно 0.

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая круг­лая скоб­ка \cup левая квад­рат­ная скоб­ка 3 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2) [-3; 3)
3) (-3; 3)
4) (-3; 3]
13.  
i

По дан­ным ри­сун­ка най­ди­те зна­че­ние x.

1) 36
2) 19
3) 18
4) 12
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 0 до 3, x левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 4 минус x пра­вая круг­лая скоб­ка dx.

1)  минус дробь: чис­ли­тель: 153, зна­ме­на­тель: 4 конец дроби
2) 0
3)  дробь: чис­ли­тель: 117, зна­ме­на­тель: 4 конец дроби
4)  минус дробь: чис­ли­тель: 155, зна­ме­на­тель: 4 конец дроби
15.  
i

Най­ди­те объем пра­виль­ной усе­чен­ной че­ты­рех­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 9 см и 25 см, а вы­со­та 18 см.

1) 4308 см3
2) 5586 см3
3) 5896 см3
4) 3888 см3
16.  
i

Ре­ши­те урав­не­ние 2 в сте­пе­ни левая круг­лая скоб­ка 4x пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 4 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка минус 1.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
3) 0
4) −1
17.  
i

Ре­ши­те си­сте­му урав­не­ний  си­сте­ма вы­ра­же­ний 2 в сте­пе­ни x умно­жить на 3 в сте­пе­ни y =72, 3 в сте­пе­ни x минус 2 в сте­пе­ни y =23. конец си­сте­мы .

1) (1; −3)
2) (3; 2)
3) (1; 3)
4) (3; −2)
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной гра­фи­ком функ­ции y = x в квад­ра­те минус 6x плюс 9 и гра­фи­ком ее про­из­вод­ной.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби
4) 1
19.  
i

Кар­тин­ка имеет форму пря­мо­уголь­ни­ка со сто­ро­на­ми 24 см и 38 см. Её на­кле­и­ли на бу­ма­гу так, что во­круг кар­тин­ки по­лу­чи­лась окан­тов­ка оди­на­ко­вой ши­ри­ны. Пло­щадь, ко­то­рую за­ни­ма­ет кар­тин­ка с окан­тов­кой, равна 1976 см2. Ка­ко­ва ши­ри­на окан­тов­ки?

1) 6
2) 9
3) 4
4) 7
20.  
i

В ариф­ме­ти­че­ской про­грес­сии a1 = −2, d = 16, най­ди­те номер члена ариф­ме­ти­че­ской про­грес­сии, рав­но­го 174.

1) 15
2) 14
3) 12
4) 13
21.  
i

На ри­сун­ке изоб­ражён ромб ABCD. Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров: а) \overrightarrowDB умно­жить на \overrightarrowAC, б) \overrightarrowAB умно­жить на \overrightarrowAC, в) \overrightarrowAB умно­жить на \overrightarrowAD, если DB = 10,AC = 24.

1) а) 0; б) 292; в) 121
2) а) 1; б) 288; в) 119
3) а) 0; б) 288; в) 119
4) а) 0; б) 282; в) 119
22.  
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: a в сте­пе­ни 4 умно­жить на a в сте­пе­ни левая круг­лая скоб­ка минус 7 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка a в квад­ра­те пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка конец дроби .

1) a−5
2) a3
3) a−2
4) a5
23.  
i

Ука­жи­те про­из­ве­де­ние кор­ней урав­не­ния: x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 4 x плюс 1 пра­вая круг­лая скоб­ка = 6 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 6 16 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 16 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
3) 1
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
24.  
i

Ре­ши­те не­ра­вен­ство \log _4 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка боль­ше или равно 0,5.

1)  левая круг­лая скоб­ка минус 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;0 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3x в кубе плюс 2x в квад­ра­те минус x плюс 1,x_0= минус 5.

1) y = 204x плюс 5
2) y = 204x плюс 701
3) y = минус 204x плюс 701
4) y = 204x минус 319
26.  
i

Для из­го­тов­ле­ния сталь­ных ди­зай­нер­ских шаров, завод по­лу­чил за­го­тов­ки в виде куба. Про­грамм­ная уста­нов­ка для об­та­чи­ва­ния де­та­лей тре­бу­ет ввода ко­ор­ди­нат за­го­тов­ки в трёхмер­ном про­стран­стве. Про­грам­мист вво­дит си­сте­му ко­ор­ди­нат в вер­ши­ну куба как по­ка­за­но на ри­сун­ке.

Опре­де­ли­те ко­ор­ди­на­ты точки B.

1) (4; 4; 0)
2) (4; 0; 4)
3) (4; 4; 4)
4) (0; 4; 0)
27.  
i

Для из­го­тов­ле­ния сталь­ных ди­зай­нер­ских шаров, завод по­лу­чил за­го­тов­ки в виде куба. Про­грамм­ная уста­нов­ка для об­та­чи­ва­ния де­та­лей тре­бу­ет ввода ко­ор­ди­нат за­го­тов­ки в трёхмер­ном про­стран­стве. Про­грам­мист вво­дит си­сте­му ко­ор­ди­нат в вер­ши­ну куба как по­ка­за­но на ри­сун­ке.

Длина ребра куба равна

1) 5
2) 3
3) 4
4) 2
28.  
i

Для из­го­тов­ле­ния сталь­ных ди­зай­нер­ских шаров, завод по­лу­чил за­го­тов­ки в виде куба. Про­грамм­ная уста­нов­ка для об­та­чи­ва­ния де­та­лей тре­бу­ет ввода ко­ор­ди­нат за­го­тов­ки в трёхмер­ном про­стран­стве. Про­грам­мист вво­дит си­сте­му ко­ор­ди­нат в вер­ши­ну куба как по­ка­за­но на ри­сун­ке.

Опре­де­ли­те ко­ор­ди­на­ты точки C.

1) (4; 0; 0)
2) (0; 4; 0)
3) (4; 4; 0)
4) (4; 4; 4)
29.  
i

Учи­тель дал до­маш­нее прак­ти­че­ское за­да­ние по гео­мет­рии. Сде­лать макет приз­мы и со­ста­вить к ним за­да­ния. Самат под­го­то­вил макет пра­виль­ной ше­сти­уголь­ной приз­мы со сто­ро­ной ос­но­ва­ния рав­ной 1, а бо­ко­вое ребро 2 и со­ста­вил сле­ду­ю­щие за­да­ния.

Опре­де­ли­те угол между пря­мой AD1 и плос­ко­стью ABCDEF.

1) 30°
2) 90°
3) 60°
4) 45°
30.  
i

Для из­го­тов­ле­ния сталь­ных ди­зай­нер­ских шаров, завод по­лу­чил за­го­тов­ки в виде куба. Про­грамм­ная уста­нов­ка для об­та­чи­ва­ния де­та­лей тре­бу­ет ввода ко­ор­ди­нат за­го­тов­ки в трёхмер­ном про­стран­стве. Про­грам­мист вво­дит си­сте­му ко­ор­ди­нат в вер­ши­ну куба как по­ка­за­но на ри­сун­ке.

Для из­го­тов­ле­ния де­та­ли в форме шара со­ставь­те его урав­не­ние.

1)  левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка z плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те =4
2)  левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка z плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те =2
3)  левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка z минус 2 пра­вая круг­лая скоб­ка в квад­ра­те =2
4)  левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка z минус 2 пра­вая круг­лая скоб­ка в квад­ра­те =4
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = 4 ко­си­нус x плюс 2. Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­я­ми функ­ции и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) 1

2) 3

3) −2

4) 6

32.  
i

Окруж­ность опи­са­на около пря­мо­уголь­но­го тре­уголь­ни­ка, ка­те­ты ко­то­ро­го равны 6 и 8. Уста­но­ви­те со­от­вет­ствие между пло­ща­дью тре­уголь­ни­ка, ра­ди­у­сом окруж­но­сти и про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их чис­ло­вые зна­че­ния.

A) Пло­щадь тре­уголь­ни­ка

Б) Ра­ди­ус опи­сан­ной окруж­но­сти

1) (40; 50)

2) (21; 27)

3) [5; 8)

4) (11;⁠15]

33.  
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка 2x минус 3 пра­вая круг­лая скоб­ка в кубе ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 4x плюс 4 конец ар­гу­мен­та , если из­вест­но, что x боль­ше 2. Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (−150; −120)

2) (−10; 5]

3) [10; 30)

4) (−110; −80)

34.  
i

Даны урав­не­ния x в квад­ра­те минус 11x плюс 24 = 0 и  левая круг­лая скоб­ка 0,25 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 128, зна­ме­на­тель: 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка конец дроби . Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем пер­во­го урав­не­ния, но не яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) 2

2) 8

3) 1

4) 3

35.  
i

В ариф­ме­ти­че­ской про­грес­сии (an) из­вест­но, что a_2=1 и a_4=9. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) d

Б) S20

1) 700

2) 2

3) 4

4) 350

36.  
i

Ука­жи­те вы­ра­же­ния, зна­че­ния ко­то­рых чис­лен­но равны  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

1) 2 синус 60 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка
2)  синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
3)  тан­генс 45 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка
4) 2 тан­генс 30 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка
5) \ctg 30 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка
6)  минус \ctg дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
37.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  тан­генс 225 гра­ду­сов ко­си­нус 330 гра­ду­сов \ctg120 гра­ду­сов синус 240 гра­ду­сов .

1)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
2)  дробь: чис­ли­тель: 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
3)  дробь: чис­ли­тель: 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 8 конец дроби
4)  минус дробь: чис­ли­тель: 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 8 конец дроби
5)  минус дробь: чис­ли­тель: 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
6)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
38.  
i

Дана по­сле­до­ва­тель­ность на­ту­раль­ных чисел, мень­ших 170, да­ю­щих оста­ток 1 при де­ле­нии на 19. Вы­бе­ри­те вер­ные утвер­жде­ния.

1) Сумма всех чисел равна 690.
2) Таких чисел 8.
3) Сумма всех чисел равна 695.
4) Раз­ность двух рядом сто­я­щих чисел равна 18.
5) Раз­ность между пер­вым и по­след­ним чис­лом равна 150.
6) Сумма всех чисел равна 692.
39.  
i

Ре­ши­те си­сте­му

 си­сте­ма вы­ра­же­ний новая стро­ка 9 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 7 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка =457, новая стро­ка 6 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус 14 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка = минус 890. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния 2x плюс y.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 36 конец ар­гу­мен­та
3) 7
4) 0
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 49 конец ар­гу­мен­та
6) 6
40.  
i

Дана SABCD пи­ра­ми­да, SO — вы­со­та, АВСD — пря­мо­уголь­ник. Вы­чис­ли­те пло­щадь пол­ной по­верх­но­сти пи­ра­ми­ды, если AD = 6, DC = 8 и SO = 4.

1) 8 левая круг­лая скоб­ка 11 плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
2) 11 плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) 15
4) 4 левая круг­лая скоб­ка 22 плюс 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
5) 16 левая круг­лая скоб­ка 2 плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
6) 17